Modeling China’s Sichuan-Yunnan’s ionosphere based on multi-channel WOA-CNN-LSTM algorithm

电离层 中国 频道(广播) 计算机科学 算法 遥感 地质学 电信 地球物理学 历史 考古
作者
Wang Li,H. Zhu,Shuangshuang Shi,Dongsheng Zhao,Yi Shen,Changyong Hé
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-18 被引量:2
标识
DOI:10.1109/tgrs.2024.3403684
摘要

The total electron content (TEC) of ionosphere at low latitudes is significantly influenced by solar-geomagnetic activity and seasonal variations. Traditional ionospheric models often struggle to accurately forecast TEC in low latitudes, which limits the improvement of positioning accuracy for single-frequency GNSS (Global Navigation Satellite System) receivers. This study focuses on the Sichuan and Yunnan areas of China that locate on the northern crest of the equatorial ionization anomaly, utilizing data from 48 stations of the Chinese GNSS network. It employs a Convolutional Long Short-Term Memory network with multi-channel characteristics, combined with the Whale Optimization Algorithm, to construct a WOA-CNN-LSTM model for predicting TEC variations. The results demonstrate that the WOA-CNN-LSTM model outperforms Convolutional Neural Network-Gated Recurrent Unit (CNN-GRU), Bidirectional Long Short-Term Memory (BiLSTM), and Recurrent Neural Network (RNN) models in spatial morphology. In 2015 (a year with geomagnetic storms), the root mean square error (RMSE) values for all four seasons are at or below 1.96TECu, with mean absolute error (MAE) values at or below 1.42TECu, and Pearson correlation coefficients at or above 0.98. In 2019 (a calm year), the RMSE values are all below 0.74TECu, MAE values are all below 0.54TECu, and Pearson correlation coefficients remain at or above 0.95. In terms of temporal variation, the RMSE prediction results for the four observation stations are all at or below 2.75TECu for each of the four seasons in 2015, improving to 1.56TECu in 2019. Therefore, this model significantly enhances ionospheric prediction accuracy in low-latitude regions, benefiting navigation positioning, space environment forecasting, and disaster early warning systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Owen应助平安如意采纳,获得10
1秒前
kakafan发布了新的文献求助10
1秒前
圈圈完成签到,获得积分10
1秒前
2秒前
赘婿应助LQ采纳,获得10
3秒前
迅速友容发布了新的文献求助10
3秒前
Henry完成签到,获得积分20
3秒前
3秒前
小墨留下了新的社区评论
4秒前
7秒前
了尘完成签到,获得积分10
8秒前
8秒前
8秒前
研友_pnx37L完成签到,获得积分10
8秒前
8秒前
纪靖雁发布了新的文献求助10
8秒前
发哥完成签到 ,获得积分10
9秒前
赘婿应助迅速友容采纳,获得30
12秒前
12秒前
12秒前
czz发布了新的文献求助10
13秒前
海盗完成签到,获得积分10
14秒前
LQ发布了新的文献求助10
16秒前
科研通AI5应助流白采纳,获得10
17秒前
kakafan完成签到,获得积分10
17秒前
18秒前
putongshiming完成签到,获得积分20
19秒前
21秒前
橡树果完成签到 ,获得积分10
21秒前
曾曾完成签到,获得积分10
23秒前
23秒前
25秒前
25秒前
苏大帅爱看文献完成签到,获得积分10
26秒前
27秒前
高兴荔枝发布了新的文献求助10
27秒前
谦让乘云应助曾天祥采纳,获得80
29秒前
30秒前
舒适蛋挞完成签到,获得积分10
30秒前
不想说话发布了新的文献求助10
31秒前
高分求助中
Practitioner Research at Doctoral Level 600
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3797671
求助须知:如何正确求助?哪些是违规求助? 3343117
关于积分的说明 10314740
捐赠科研通 3059860
什么是DOI,文献DOI怎么找? 1679112
邀请新用户注册赠送积分活动 806343
科研通“疑难数据库(出版商)”最低求助积分说明 763118