A spatiotemporal graph transformer approach for Alzheimer’s disease diagnosis with rs-fMRI

计算机科学 图形 阿尔茨海默病 人工智能 变压器 神经科学 疾病 医学 心理学 理论计算机科学 内科学 工程类 电压 电气工程
作者
Peng He,Zhan Shi,Yaping Cui,Ruyan Wang,Dapeng Wu
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:178: 108762-108762 被引量:14
标识
DOI:10.1016/j.compbiomed.2024.108762
摘要

Alzheimer's disease (AD) is a neurodegenerative disease accompanied by cognitive impairment. Early diagnosis is crucial for the timely treatment and intervention of AD. Resting-state functional magnetic resonance imaging (rs-fMRI) records the temporal dynamics and spatial dependency in the brain, which have been utilized for automatically diagnosis of AD in the community. Existing approaches of AD diagnosis using rs-fMRI only assess functional connectivity, ignoring the spatiotemporal dependency mining of rs-fMRI. In addition, it is difficult to increase diagnosis accuracy due to the shortage of rs-fMRI sample and the poor anti-noise ability of model. To deal with these problems, this paper proposes a novel approach for the automatic diagnosis of AD, namely spatiotemporal graph transformer network (STGTN). The proposed STGTN can effectively extract spatiotemporal features of rs-fMRI. Furthermore, to solve the sample-limited problem and to improve the anti-noise ability of the proposed model, an adversarial training strategy is adopted for the proposed STGTN to generate adversarial examples (AEs) and augment training samples with AEs. Experimental results indicate that the proposed model achieves the classification accuracy of 92.58%, and 85.27% with the adversarial training strategy for AD vs. normal control (NC), early mild cognitive impairment (eMCI) vs. late mild cognitive impairment (lMCI) respectively, outperforming the state-of-the-art methods. Besides, the spatial attention coefficients reflected from the designed model reveal the importance of brain connections under different classification tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
huanhuan完成签到,获得积分10
刚刚
2秒前
2秒前
2秒前
积极达发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助30
4秒前
ding应助zhang采纳,获得10
4秒前
luu发布了新的文献求助30
4秒前
科研通AI5应助XiYang采纳,获得10
5秒前
5秒前
称心的书双完成签到,获得积分10
5秒前
5秒前
6秒前
6秒前
Like发布了新的文献求助10
6秒前
6秒前
SZY发布了新的文献求助10
8秒前
感动又晴发布了新的文献求助10
9秒前
李健应助和光同尘采纳,获得30
9秒前
11发布了新的文献求助10
10秒前
11秒前
11秒前
Wdw2236完成签到,获得积分10
11秒前
cc完成签到,获得积分10
12秒前
13秒前
TuTu完成签到,获得积分10
13秒前
张志恒发布了新的文献求助10
13秒前
今后应助YDM采纳,获得10
13秒前
luu完成签到,获得积分10
14秒前
15秒前
15秒前
郁乾完成签到,获得积分10
15秒前
16秒前
李飞龙完成签到,获得积分10
16秒前
HYYY发布了新的文献求助10
16秒前
16秒前
赘婿应助失眠班采纳,获得10
17秒前
大胆寒风发布了新的文献求助10
18秒前
英俊的铭应助弎夜采纳,获得10
18秒前
浮游应助一年生黑麦草采纳,获得30
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5074163
求助须知:如何正确求助?哪些是违规求助? 4294315
关于积分的说明 13380837
捐赠科研通 4115699
什么是DOI,文献DOI怎么找? 2253823
邀请新用户注册赠送积分活动 1258466
关于科研通互助平台的介绍 1191322