Machine Learning-Assisted High-Throughput Identification and Quantification of Protein Biomarkers with Printed Heterochains

化学 吞吐量 鉴定(生物学) 高通量筛选 纳米技术 色谱法 计算生物学 组合化学 生物化学 计算机科学 电信 植物 材料科学 无线 生物
作者
Xiangyu Pan,Zeying Zhang,Yang Yun,Xu Zhang,Yali Sun,Zixuan Zhang,Huadong Wang,Yang Xu,Zhiyu Tan,Yaqi Yang,Hongfei Xie,Bogdan Bogdanov,Georgii Zmaga,Pavel Senyushkin,Xuemei Wei,Yanlin Song,Meng Su
出处
期刊:Journal of the American Chemical Society [American Chemical Society]
卷期号:146 (28): 19239-19248 被引量:6
标识
DOI:10.1021/jacs.4c04460
摘要

Advanced in vitro diagnosis technologies are highly desirable in early detection, prognosis, and progression monitoring of diseases. Here, we engineer a multiplex protein biosensing strategy based on the tunable liquid confinement self-assembly of multi-material heterochains, which show improved sensitivity, throughput, and accuracy compared to standard ELISA kits. By controlling the material combination and the number of ligand nanoparticles (NPs), we observe robust near-field enhancement as well as both strong electromagnetic resonance in polymer-semiconductor heterochains. In particular, their optical signals show a linear response to the coordination number of the semiconductor NPs in a wide range. Accordingly, a visible nanophotonic biosensor is developed by functionalizing antibodies on central polymer chains that can identify target proteins attached to semiconductor NPs. This allows for the specific detection of multiple protein biomarkers from healthy people and pancreatic cancer patients in one step with an ultralow detection limit (1 pg/mL). Furthermore, rapid and high-throughput quantification of protein expression levels in diverse clinical samples such as buffer, urine, and serum is achieved by combining a neural network algorithm, with an average accuracy of 97.3%. This work demonstrates that the heterochain-based biosensor is an exemplary candidate for constructing next-generation diagnostic tools and suitable for many clinical settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
薄荷岛1完成签到,获得积分10
刚刚
快快乐乐巴完成签到,获得积分10
1秒前
丘比特应助瘦瘦寒云采纳,获得10
2秒前
lizhiqian2024发布了新的文献求助10
3秒前
4秒前
元复天发布了新的文献求助10
5秒前
6秒前
6秒前
丘比特应助瘦瘦涵雁采纳,获得10
7秒前
fafamimireredo完成签到,获得积分10
9秒前
大约在冬季完成签到,获得积分10
9秒前
搜集达人应助威士忌www采纳,获得10
10秒前
Hiker发布了新的文献求助10
10秒前
wp完成签到,获得积分10
11秒前
雨衣发布了新的文献求助10
12秒前
12秒前
英俊的铭应助jjgbmt采纳,获得10
14秒前
睡觉王发布了新的文献求助10
15秒前
Erin发布了新的文献求助10
16秒前
16秒前
18秒前
19秒前
科研通AI5应助朴素采文采纳,获得10
20秒前
多多完成签到,获得积分10
21秒前
威士忌www发布了新的文献求助10
23秒前
25秒前
25秒前
lizhiqian2024发布了新的文献求助10
25秒前
科研通AI5应助羞涩的问兰采纳,获得10
27秒前
28秒前
jjgbmt发布了新的文献求助10
28秒前
李健的小迷弟应助dd采纳,获得10
28秒前
有思想发布了新的文献求助30
29秒前
传奇3应助小龙采纳,获得10
30秒前
科研通AI2S应助无辜忆寒采纳,获得10
32秒前
32秒前
恶魔小艾发布了新的文献求助10
33秒前
威士忌www完成签到,获得积分10
33秒前
春景当思完成签到,获得积分10
35秒前
风和日li完成签到,获得积分0
37秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3791034
求助须知:如何正确求助?哪些是违规求助? 3335765
关于积分的说明 10276743
捐赠科研通 3052313
什么是DOI,文献DOI怎么找? 1675100
邀请新用户注册赠送积分活动 803082
科研通“疑难数据库(出版商)”最低求助积分说明 761066