Research on bearing fault diagnosis based on novel MRSVD-CWT and improved CNN-LSTM

方位(导航) 断层(地质) 人工智能 计算机科学 模式识别(心理学) 地震学 地质学
作者
Yuan Guo,Jun Zhou,Zhenbiao Dong,Huan She,Weijia Xu
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (9): 095003-095003 被引量:11
标识
DOI:10.1088/1361-6501/ad4fb3
摘要

Abstract As a critical component in mechanical equipment, rolling bearings play a vital role in industrial production. Effective bearing fault diagnosis provides a more reliable guarantee for the safe operation of the industrial output. Traditional data-driven bearing fault diagnosis methods often have problems such as insufficient fault feature extraction and poor model generalization capabilities, resulting in reduced diagnostic accuracy. To solve these problems and significantly improve the diagnosis accuracy, this paper proposes a novel fault diagnosis method based on multi-resolution singular value decomposition (MRSVD), continuous wavelet transform (CWT), improved convolutional neural network (CNN) enhanced by convolutional block attention module, and long short-term memory (LSTM). Through MRSVD, the vibration signal is decomposed layer by layer into multiple denoised signals, thus signal noise can be eliminated to the greatest extent to gain the optimal denoised signals; then through CWT, the optimal denoised signals are converted into two-dimensional time-frequency images so that the local and global characteristic information can be fully captured. Finally, through improved CNN-LSTM, feature extraction is greatly enhanced, resulting in high accuracy of fault diagnosis. Lots of experiments are organized to test the performance, and the experimental results show that the proposed method on various datasets has better diagnosis accuracy and generalization ability under different working conditions than other methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大海完成签到,获得积分10
刚刚
李健应助冲鸭采纳,获得10
刚刚
刚刚
刚刚
南宫初柒完成签到 ,获得积分10
刚刚
1秒前
喵呜发布了新的文献求助10
2秒前
mary发布了新的文献求助10
2秒前
2秒前
3秒前
3秒前
捏个小雪团完成签到 ,获得积分10
3秒前
李健的小迷弟应助guo采纳,获得10
4秒前
可爱的函函应助金皓东采纳,获得10
4秒前
风趣的亦巧完成签到,获得积分10
4秒前
Fenta发布了新的文献求助10
4秒前
邓程东发布了新的文献求助10
5秒前
YamDaamCaa应助燕武采纳,获得30
5秒前
6秒前
茕凡桃七完成签到,获得积分10
6秒前
Lucas应助只只只采纳,获得10
6秒前
7秒前
酷波er应助俏皮觅风采纳,获得10
7秒前
8秒前
8秒前
8秒前
8秒前
8秒前
275891672发布了新的文献求助10
9秒前
9秒前
CC完成签到,获得积分20
9秒前
FashionBoy应助waoller1采纳,获得10
9秒前
我是老大应助waoller1采纳,获得10
9秒前
充电宝应助waoller1采纳,获得10
10秒前
李爱国应助waoller1采纳,获得10
10秒前
彭于晏应助waoller1采纳,获得10
10秒前
Ther完成签到,获得积分10
10秒前
FashionBoy应助waoller1采纳,获得10
10秒前
思源应助waoller1采纳,获得10
10秒前
传奇3应助waoller1采纳,获得10
10秒前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
2024-2030全球与中国银包铜粉市场现状及未来发展趋势 1000
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 1000
Global Eyelash Assessment scale (GEA) 1000
Maritime Applications of Prolonged Casualty Care: Drowning and Hypothermia on an Amphibious Warship 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4051112
求助须知:如何正确求助?哪些是违规求助? 3589362
关于积分的说明 11406774
捐赠科研通 3315590
什么是DOI,文献DOI怎么找? 1823915
邀请新用户注册赠送积分活动 895714
科研通“疑难数据库(出版商)”最低求助积分说明 816954