亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Obesity Risk Prediction Using Machine Learning Approach

肥胖 梯度升压 机器学习 人工智能 超重 决策树 随机森林 支持向量机 计算机科学 Boosting(机器学习) 医学 内科学
作者
A.S Maria,R. Sunder,R. Satheesh Kumar
标识
DOI:10.1109/icnwc57852.2023.10127434
摘要

Approximately about two billion peoples are affected by obesity that has drawn significant attention on social media. As the sedentary lifestyle which includes consumption of junk foods, no physical activities,spending more on screen,etc are one of the causes of obesity.Obesity generally refers to that a person's body possessing an excessive amount of fat.There is a huge increase in obesity cases which resulting cardiac problems,stroke,insomnia, breathing problems,etc.Type-2 diabetes has been detected in the patients suffering from obesity recently. The studies showing that there are lot of young individuals and children's who has been suffering from overweight and obesity issues in Bangladesh. Here, a strategy for predicting the risk of obesity is proposed that makes use of various machine learning methods. The dataset Obesity and Lifestyle taken from Kaggle site which is collection of different data based on the eating habits and physical conditions,such as height, weight,calorie intake,physical activities are just a few of the 17 different categories in the dataset that reflect the elements that cause obesity. Several machine learning methods include Gradient Boosting Classifier, Adaptive Boosting (ADA boosting), K-nearest Neighbor (K-NN), Support Vector Machine (SVM), Random Forest, and Decision Tree. A few important performance factors are used to group the models. Predicting the levels of high, medium, and low obesity in this case using the experimental results. The gradient boosting techniques have the highest accuracy 97.08% in comparison to other classifiers
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
13秒前
优秀的dd完成签到 ,获得积分10
51秒前
56秒前
Jasper应助科研通管家采纳,获得10
59秒前
Liu丰发布了新的文献求助10
1分钟前
科研通AI2S应助草木采纳,获得10
1分钟前
Owen应助Liu丰采纳,获得10
1分钟前
1分钟前
1分钟前
晨光完成签到 ,获得积分10
1分钟前
呆呆的猕猴桃完成签到 ,获得积分10
2分钟前
wangrblzu应助科研通管家采纳,获得10
3分钟前
wangrblzu应助科研通管家采纳,获得10
3分钟前
cy0824完成签到 ,获得积分10
3分钟前
3分钟前
hsk发布了新的文献求助10
3分钟前
4分钟前
hsk完成签到,获得积分10
4分钟前
jqliu完成签到,获得积分10
4分钟前
冬去春来完成签到 ,获得积分10
4分钟前
wangrblzu应助科研通管家采纳,获得10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
淡淡醉波wuliao完成签到 ,获得积分10
5分钟前
矜天完成签到 ,获得积分10
5分钟前
xiaozou55完成签到 ,获得积分10
5分钟前
6分钟前
xin发布了新的文献求助10
6分钟前
赘婿应助科研通管家采纳,获得10
6分钟前
8分钟前
Liu丰发布了新的文献求助10
8分钟前
孙燕应助科研通管家采纳,获得10
8分钟前
科研通AI2S应助科研通管家采纳,获得10
8分钟前
wangrblzu应助科研通管家采纳,获得10
8分钟前
wangrblzu应助科研通管家采纳,获得10
8分钟前
10分钟前
10分钟前
114514发布了新的文献求助10
10分钟前
小蛮样完成签到,获得积分10
10分钟前
科研通AI2S应助科研通管家采纳,获得10
10分钟前
赘婿应助ma采纳,获得10
10分钟前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3840829
求助须知:如何正确求助?哪些是违规求助? 3382744
关于积分的说明 10526401
捐赠科研通 3102602
什么是DOI,文献DOI怎么找? 1708918
邀请新用户注册赠送积分活动 822781
科研通“疑难数据库(出版商)”最低求助积分说明 773603