Imaging Techniques for Evaluation of Ripening and Maturity of Fruits and Vegetables

成熟 成熟度(心理) 数学 可滴定酸 肉体 采后 生物系统 淀粉 食品科学 园艺 人工智能 化学 计算机科学 生物 发展心理学 心理学
作者
Hülya Çakmak,Ece Söğüt
标识
DOI:10.1007/978-981-19-5422-1_3
摘要

Optimal harvesting time of fruits and vegetables is an important factor, which is directly associated with the postharvest quality of the produce and shelf life. Depending on the variety of horticultural products, maturity can be assessed using internal properties like moisture, sugar, starch, oil content, soluble solid content (SSC), titratable acidity (TA), SSC/TA, pH, and firmness, or using external properties like surface or peel color (chlorophyll, carotenoids, lycopene, etc.), size, volume, shape, and peel/flesh ratio that are taken into consideration. The level of maturity for these products is determined by the limits based on the internal and external properties of that specific product. Conventional maturity evaluation methods generally employ destructive analysis; however, an increasing number of studies in the last decade have shown that nondestructive methods have been successfully applied to determine the maturity of produce. Nondestructive methods allow analyzing the raw data extracted from the original image and reconstructing a 3D model of dissected sample for visualization of internal structure. Surface color or the structure of samples is also analyzed with several imaging and image processing techniques in order to determine the maturity levels. Whether the internal or external structure is scrutinized, the compliance of extracted data with destructive maturity or ripening parameters must be clearly verified. Statistical models like artificial neural network, principal component analysis, or machine learning approaches are applied because of reducing the amount of extracted data from imaging analysis and its complexity. In this chapter, the imaging techniques used for determining the maturity or ripening levels of fruits and vegetables are discussed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大模型应助跳跃小伙采纳,获得30
刚刚
达达发布了新的文献求助10
1秒前
2秒前
Camellia完成签到,获得积分10
5秒前
5秒前
6秒前
北过居庸完成签到,获得积分10
6秒前
renpp822发布了新的文献求助10
7秒前
9秒前
小虫学长应助科研通管家采纳,获得10
9秒前
9秒前
大个应助科研通管家采纳,获得10
9秒前
完美世界应助科研通管家采纳,获得10
9秒前
大个应助科研通管家采纳,获得10
10秒前
10秒前
Orange应助科研通管家采纳,获得10
10秒前
科研通AI5应助科研通管家采纳,获得10
10秒前
10秒前
田様应助科研通管家采纳,获得10
10秒前
领导范儿应助科研通管家采纳,获得50
10秒前
华仔应助科研通管家采纳,获得10
10秒前
FashionBoy应助科研通管家采纳,获得10
10秒前
香蕉觅云应助科研通管家采纳,获得10
10秒前
思源应助科研通管家采纳,获得30
10秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
无花果应助科研通管家采纳,获得10
10秒前
酷波er应助科研通管家采纳,获得10
10秒前
共享精神应助科研通管家采纳,获得10
10秒前
10秒前
zhangshan完成签到 ,获得积分10
11秒前
超级笑南完成签到,获得积分10
12秒前
张舒涵完成签到,获得积分10
12秒前
orixero应助是小越啊采纳,获得10
13秒前
超级笑南发布了新的文献求助10
15秒前
16秒前
踏实志泽完成签到,获得积分10
19秒前
zhuazhua完成签到 ,获得积分10
23秒前
冰魂应助假面绅士采纳,获得30
24秒前
26秒前
木木三发布了新的文献求助10
28秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776633
求助须知:如何正确求助?哪些是违规求助? 3322152
关于积分的说明 10208826
捐赠科研通 3037339
什么是DOI,文献DOI怎么找? 1666647
邀请新用户注册赠送积分活动 797603
科研通“疑难数据库(出版商)”最低求助积分说明 757921