清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A deep reinforcement learning model for dynamic job-shop scheduling problem with uncertain processing time

计算机科学 强化学习 动态优先级调度 马尔可夫决策过程 单调速率调度 调度(生产过程) 公平份额计划 作业车间调度 最小空闲时间调度 流水车间调度 数学优化 最早截止时间优先安排 两级调度 人工智能 马尔可夫过程 地铁列车时刻表 数学 统计 操作系统
作者
Xinquan Wu,Xuefeng Yan,Donghai Guan,Mingqiang Wei
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:131: 107790-107790 被引量:57
标识
DOI:10.1016/j.engappai.2023.107790
摘要

The dynamic job-shop scheduling problem (DJSP) is a type of scheduling tasks where rescheduling is performed when encountering the uncertainties such as the uncertain operation processing time. However, the current deep reinforcement learning (DRL) scheduling approaches are hard to train convergent scheduling policies as the problem scale increases, which is very important for rescheduling under uncertainty. In this paper, we propose a DRL scheduling method for DJSP based on the proximal policy optimization (PPO) with hybrid prioritized experience replay. The job shop scheduling problem is formulated as a sequential decision-making problem based on Markov Decision Process (MDP) where a novel state representation is designed based on the feasible solution matrix which depicts the scheduling order of a scheduling task, a set of paired priority dispatching rules (PDR) are used as the actions and a new intuitive reward function is established based on the machine idle time. Moreover, a new hybrid prioritized experience replay method for PPO is proposed to reduce the training time where samples with positive temporal-difference (TD) error are replayed. Static experiments on classic benchmark instances show that the make-span obtained by our scheduling agent has been reduced by 1.59% on average than the best known DRL methods. In addition, dynamic experiments demonstrate that the training time of the reused scheduling policy is reduced by 27% compared with the retrained policy when encountering uncertainties such as uncertain operation processing time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
ZhaoW发布了新的文献求助10
5秒前
11秒前
ZhaoW发布了新的文献求助10
17秒前
FashionBoy应助ZhaoW采纳,获得10
43秒前
无与伦比完成签到 ,获得积分10
48秒前
55秒前
大智若愚骨头完成签到,获得积分10
1分钟前
zhongying完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
2分钟前
lanxinge完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
Gallager发布了新的文献求助10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
2分钟前
ZhaoW发布了新的文献求助10
2分钟前
2分钟前
情怀应助Gallager采纳,获得10
3分钟前
AbdoSpace完成签到,获得积分10
3分钟前
YH完成签到,获得积分10
3分钟前
雪城完成签到,获得积分10
3分钟前
面汤完成签到 ,获得积分10
3分钟前
谭凯文完成签到 ,获得积分10
3分钟前
wenliu发布了新的文献求助10
3分钟前
4分钟前
小蘑菇应助ZhaoW采纳,获得10
4分钟前
在水一方应助ZhaoW采纳,获得10
4分钟前
所所应助科研通管家采纳,获得10
4分钟前
4分钟前
ZhaoW发布了新的文献求助10
4分钟前
4分钟前
ZhaoW发布了新的文献求助10
4分钟前
wodetaiyangLLL完成签到 ,获得积分10
4分钟前
完美世界应助ZhaoW采纳,获得10
5分钟前
彭于晏应助ZhaoW采纳,获得10
5分钟前
科研通AI6应助caonima采纳,获得30
5分钟前
6分钟前
magictoo发布了新的文献求助10
6分钟前
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Efficacy of sirolimus in Klippel-Trenaunay syndrome 500
上海破产法庭破产实务案例精选(2019-2024) 500
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5476683
求助须知:如何正确求助?哪些是违规求助? 4578227
关于积分的说明 14363659
捐赠科研通 4506269
什么是DOI,文献DOI怎么找? 2469204
邀请新用户注册赠送积分活动 1456623
关于科研通互助平台的介绍 1430476