Deep learning for ECG classification: A comparative study of 1D and 2D representations and multimodal fusion approaches

卷积神经网络 计算机科学 人工智能 代表(政治) 深度学习 机器学习 循环神经网络 任务(项目管理) 人工神经网络 模式识别(心理学) 管理 政治 政治学 法学 经济
作者
Hemaxi Narotamo,Mariana Dias,Ricardo Santos,André V. Carreiro,Hugo Gambôa,Margarida Silveira
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:93: 106141-106141 被引量:22
标识
DOI:10.1016/j.bspc.2024.106141
摘要

The improved diagnosis of cardiovascular diseases (CVD) from electrocardiograms (ECG) may help prevent their severity. Since Deep Learning (DL) became popular, several DL methods have been developed for ECG classification. In this work, we compare how different methods for ECG signal representation perform in the multi-label classification of CVDs, including recent attention-based strategies. Furthermore, multimodal fusion strategies are employed to improve the prediction capacity of individual representation networks. The publicly available PTB-XL ECG dataset, which contains 21,837 records and labels for the diagnosis of 4 CVDs, was used for the task. Two DL strategies using different processing approaches were compared. Recurrent Neural Network-based models take advantage of the temporal dependence between raw signal values, namely through Gated Recurrent Unit (GRU), Long Short Term Memory (LSTM) and 1D-Convolutional Neural Network models. Additionally, the raw ECG was converted into image representations, based on recent work, and the classification was performed using distinct 2D-Convolutional Neural Networks. The potential of multimodal DL was then studied through early, late and joint data fusion strategies, to evaluate the benefit of resorting to multiple representations. Results based on the 1D ECG representation outperform image-based approaches and multimodal models. The best model, GRU, achieved sensitivity and specificity of 79.67% and 81.04%, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天天快乐应助Abiy采纳,获得10
刚刚
123发布了新的文献求助10
刚刚
毛毛完成签到,获得积分10
1秒前
1秒前
4秒前
stt完成签到 ,获得积分10
4秒前
GT完成签到,获得积分10
5秒前
科目三应助会飞采纳,获得10
7秒前
Eternal完成签到,获得积分10
7秒前
8秒前
小木瓜应助Isaac采纳,获得10
9秒前
虚幻的酒窝完成签到,获得积分10
11秒前
Wayne_Sun完成签到,获得积分10
11秒前
科目三应助土豆丝采纳,获得10
12秒前
12秒前
善学以致用应助May采纳,获得10
13秒前
量子星尘发布了新的文献求助10
13秒前
16秒前
共享精神应助害怕的小玉采纳,获得10
16秒前
阿里院士完成签到,获得积分10
18秒前
科研通AI5应助落寞凌波采纳,获得10
19秒前
何仁杰发布了新的文献求助10
19秒前
ves完成签到,获得积分10
20秒前
21秒前
Sukey完成签到,获得积分10
22秒前
会飞发布了新的文献求助10
22秒前
22秒前
24秒前
24秒前
SciGPT应助ziwei采纳,获得10
24秒前
24秒前
orixero应助Isaac采纳,获得10
25秒前
25秒前
lumos发布了新的文献求助10
27秒前
28秒前
caffeine完成签到,获得积分10
28秒前
我叫马友才呀完成签到,获得积分10
28秒前
luobeibei完成签到,获得积分10
28秒前
量子星尘发布了新的文献求助20
28秒前
泥泥应助lalla采纳,获得30
28秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Local Grammar Approaches to Speech Act Studies 5000
Plutonium Handbook 4000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Functional High Entropy Alloys and Compounds 1000
Building Quantum Computers 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 900
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4224951
求助须知:如何正确求助?哪些是违规求助? 3758317
关于积分的说明 11813581
捐赠科研通 3419885
什么是DOI,文献DOI怎么找? 1876935
邀请新用户注册赠送积分活动 930363
科研通“疑难数据库(出版商)”最低求助积分说明 838582