亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep learning for ECG classification: A comparative study of 1D and 2D representations and multimodal fusion approaches

卷积神经网络 计算机科学 人工智能 代表(政治) 深度学习 机器学习 循环神经网络 任务(项目管理) 人工神经网络 模式识别(心理学) 管理 政治 政治学 法学 经济
作者
Hemaxi Narotamo,Mariana Dias,Ricardo Santos,André V. Carreiro,Hugo Gambôa,Margarida Silveira
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:93: 106141-106141 被引量:35
标识
DOI:10.1016/j.bspc.2024.106141
摘要

The improved diagnosis of cardiovascular diseases (CVD) from electrocardiograms (ECG) may help prevent their severity. Since Deep Learning (DL) became popular, several DL methods have been developed for ECG classification. In this work, we compare how different methods for ECG signal representation perform in the multi-label classification of CVDs, including recent attention-based strategies. Furthermore, multimodal fusion strategies are employed to improve the prediction capacity of individual representation networks. The publicly available PTB-XL ECG dataset, which contains 21,837 records and labels for the diagnosis of 4 CVDs, was used for the task. Two DL strategies using different processing approaches were compared. Recurrent Neural Network-based models take advantage of the temporal dependence between raw signal values, namely through Gated Recurrent Unit (GRU), Long Short Term Memory (LSTM) and 1D-Convolutional Neural Network models. Additionally, the raw ECG was converted into image representations, based on recent work, and the classification was performed using distinct 2D-Convolutional Neural Networks. The potential of multimodal DL was then studied through early, late and joint data fusion strategies, to evaluate the benefit of resorting to multiple representations. Results based on the 1D ECG representation outperform image-based approaches and multimodal models. The best model, GRU, achieved sensitivity and specificity of 79.67% and 81.04%, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
10秒前
gexzygg应助科研通管家采纳,获得10
21秒前
gexzygg应助科研通管家采纳,获得10
21秒前
gexzygg应助科研通管家采纳,获得10
21秒前
gexzygg应助科研通管家采纳,获得10
21秒前
31秒前
研友_89eKw8发布了新的文献求助10
37秒前
科研通AI6应助Li采纳,获得10
44秒前
慕青应助研友_89eKw8采纳,获得10
46秒前
59秒前
kale123关注了科研通微信公众号
1分钟前
1分钟前
烟花应助kale123采纳,获得10
1分钟前
Li发布了新的文献求助10
1分钟前
1分钟前
1分钟前
kale123发布了新的文献求助10
1分钟前
研友_89eKw8发布了新的文献求助10
1分钟前
1分钟前
蚌医闫志发布了新的文献求助10
2分钟前
蓝华完成签到 ,获得积分10
2分钟前
2分钟前
蚌医闫志完成签到,获得积分10
2分钟前
gexzygg应助科研通管家采纳,获得10
2分钟前
2分钟前
linlinliu发布了新的文献求助30
2分钟前
3分钟前
kale123完成签到,获得积分20
3分钟前
gexzygg应助Li采纳,获得10
3分钟前
4分钟前
gexzygg应助科研通管家采纳,获得10
4分钟前
gexzygg应助科研通管家采纳,获得10
4分钟前
gexzygg应助科研通管家采纳,获得10
4分钟前
gexzygg应助科研通管家采纳,获得10
4分钟前
4分钟前
5分钟前
jasonwee发布了新的文献求助10
5分钟前
5分钟前
5分钟前
Jasper应助单薄水星采纳,获得10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5549249
求助须知:如何正确求助?哪些是违规求助? 4634593
关于积分的说明 14634876
捐赠科研通 4576049
什么是DOI,文献DOI怎么找? 2509476
邀请新用户注册赠送积分活动 1485332
关于科研通互助平台的介绍 1456512