亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

The practical clinical role of machine learning models with different algorithms in predicting prostate cancer local recurrence after radical prostatectomy

前列腺切除术 医学 前列腺癌 接收机工作特性 逻辑回归 旁侵犯 生化复发 线性判别分析 算法 人工智能 机器学习 癌症 内科学 计算机科学
作者
Chenhan Hu,Xiaomeng Qiao,Chunhong Hu,Changhao Cao,Ximing Wang,Jie Bao
出处
期刊:Cancer Imaging [BioMed Central]
卷期号:24 (1)
标识
DOI:10.1186/s40644-024-00667-x
摘要

Abstract Background The detection of local recurrence for prostate cancer (PCa) patients following radical prostatectomy (RP) is challenging and can influence the treatment plan. Our aim was to construct and verify machine learning models with three different algorithms based on post-operative mpMRI for predicting local recurrence of PCa after RP and explore their potential clinical value compared with the Prostate Imaging for Recurrence Reporting (PI-RR) score of expert-level radiologists. Methods A total of 176 patients were retrospectively enrolled and randomly divided into training ( n = 123) and testing ( n = 53) sets. The PI-RR assessments were performed by two expert-level radiologists with access to the operative histopathological and pre-surgical clinical results. The radiomics models to predict local recurrence were built by utilizing three different algorithms (i.e., support vector machine [SVM], linear discriminant analysis [LDA], and logistic regression-least absolute shrinkage and selection operator [LR-LASSO]). The combined model integrating radiomics features and PI-RR score was developed using the most effective classifier. The classification performances of the proposed models were assessed by receiver operating characteristic (ROC) curve analysis. Results There were no significant differences between the training and testing sets concerning age, prostate-specific antigen (PSA), Gleason score, T-stage, seminal vesicle invasion (SVI), perineural invasion (PNI), and positive surgical margins (PSM). The radiomics model based on LR-LASSO exhibited superior performance than other radiomics models, with an AUC of 0.858 in the testing set; the PI-RR yielded an AUC of 0.833, and there was no significant difference between the best radiomics model and the PI-RR score. The combined model achieved the best predictive performance with an AUC of 0.924, and a significant difference was observed between the combined model and PI-RR score. Conclusions Our radiomics model is an effective tool to predict PCa local recurrence after RP. By integrating radiomics features with the PI-RR score, our combined model exhibited significantly better predictive performance of local recurrence than expert-level radiologists’ PI-RR assessment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
共享精神应助仁爱的帽子采纳,获得10
5秒前
32秒前
WebCasa应助科研通管家采纳,获得10
32秒前
FashionBoy应助科研通管家采纳,获得10
32秒前
yayika完成签到,获得积分10
38秒前
两袖清风完成签到 ,获得积分10
42秒前
WebCasa发布了新的文献求助10
1分钟前
李健的小迷弟应助huang采纳,获得10
1分钟前
2分钟前
huang完成签到,获得积分10
2分钟前
WebCasa应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
情怀应助科研通管家采纳,获得10
2分钟前
huang发布了新的文献求助10
2分钟前
2分钟前
3分钟前
4分钟前
4分钟前
WebCasa应助科研通管家采纳,获得10
4分钟前
星辰大海应助科研通管家采纳,获得10
4分钟前
Forever完成签到,获得积分10
4分钟前
Ethan完成签到,获得积分10
4分钟前
石头完成签到 ,获得积分10
4分钟前
小郭发布了新的文献求助20
4分钟前
liuliqiong完成签到,获得积分10
5分钟前
6分钟前
6分钟前
深情安青应助科研通管家采纳,获得10
6分钟前
充电宝应助科研通管家采纳,获得10
6分钟前
搜集达人应助科研通管家采纳,获得10
8分钟前
8分钟前
8分钟前
丁三问发布了新的文献求助10
8分钟前
Arthur完成签到 ,获得积分10
8分钟前
丁三问完成签到,获得积分10
9分钟前
小蘑菇应助库里强采纳,获得10
9分钟前
9分钟前
silsotiscolor完成签到,获得积分10
10分钟前
11分钟前
Sunny完成签到,获得积分10
11分钟前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Plutonium Handbook 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 640
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 540
Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms 500
SPSS for Windows Step by Step: A Simple Study Guide and Reference, 17.0 Update (10th Edition) 500
PBSM: Predictive Bi-Preference Stable Matching in Spatial Crowdsourcing 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4118284
求助须知:如何正确求助?哪些是违规求助? 3656893
关于积分的说明 11577059
捐赠科研通 3359155
什么是DOI,文献DOI怎么找? 1845531
邀请新用户注册赠送积分活动 910827
科研通“疑难数据库(出版商)”最低求助积分说明 827070