Multimodel ensemble estimation of Landsat-like global terrestrial latent heat flux using a generalized deep CNN-LSTM integration algorithm

潜热 遥感 估计 焊剂(冶金) 环境科学 算法 显热 气象学 计算机科学 人工智能 地质学 地理 工程类 材料科学 系统工程 冶金
作者
Xihong Guo,Yunjun Yao,Qingxin Tang,Shunlin Liang,Changliang Shao,Joshua B. Fisher,Jiquan Chen,Kun Jia,Xiaolin Zhang,Ke Shang,Junming Yang,Ruiyang Yu,Zijing Xie,Lu Liu,Jian Ning,Lilin Zhang
出处
期刊:Agricultural and Forest Meteorology [Elsevier BV]
卷期号:349: 109962-109962
标识
DOI:10.1016/j.agrformet.2024.109962
摘要

Accurate estimates of high-spatial-resolution global terrestrial latent heat flux (LE) from Landsat data are crucial for many basic and applied research. Yet current Landsat-derived LE products were developed using single algorithm with large uncertainties and discrepancies. Here we proposed a convolutional neural network-long short-term memory (CNN-LSTM)-based integrated LE (CNN-LSTM-ILE) framework that integrates five Landsat-derived physical LE algorithms, topography-related variables (elevation, slope and aspect) and eddy covariance (EC) observations to estimate 30-m global terrestrial LE. CNN-LSTM-ILE not only conserves good performance of LE estimation from pure deep learning (DL) algorithm, but partially inherits physical mechanism of the individual physical algorithms for improving the generalization of the integration algorithms for extreme cases. CNN-LSTM is an algorithm that combines two deep learning structures (CNN and LSTM) to effectively utilize the spatial and temporal information contained in the forcing inputs. The data were collected from 190 globally distributed EC observations from 2000 to 2015 and were provided by FLUXNET. The cross-validation results indicated that the CNN-LSTM integration algorithm improved the LE estimates by reducing the root mean square error (RMSE) of 5–8 W/m2 and increasing Kling-Gupta efficiency (KGE) of 0.05–0.16 when compared with the individual LE algorithms and the results of three other machine learning integration algorithms (multiple linear regression, MLR; random forest, RF; and deep neural networks, DNN). The CNN-LSTM integration algorithm had highest KGE (0.81) and R2 (0.66) compared to ground-measured and was applied to generate the Landsat-like regional and global terrestrial LE. An innovation of our strategy is that the CNN-LSTM-ILE model integrates pixel proximity effects and daily LE variations to enhance the accuracy of 16-day LE estimations. This approach can produce a more reliable Landsat-like global terrestrial LE product to improve the representativeness of heterogeneous regions for monitoring hydrological variables.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
葱饼完成签到 ,获得积分10
1秒前
THJ123发布了新的文献求助10
1秒前
基础题发布了新的文献求助10
2秒前
万灵竹发布了新的文献求助20
4秒前
Hehe完成签到,获得积分10
6秒前
笨笨绿柳发布了新的文献求助10
6秒前
10秒前
清水发布了新的文献求助10
11秒前
Ava应助有热心愿意采纳,获得10
11秒前
脑洞疼应助有热心愿意采纳,获得10
11秒前
小v的格洛米完成签到,获得积分10
15秒前
司徒文青应助信仰采纳,获得30
15秒前
打打应助zjw采纳,获得10
15秒前
16秒前
yga18发布了新的文献求助30
17秒前
20秒前
打打应助Yolo采纳,获得10
26秒前
26秒前
科研通AI2S应助火星上仰采纳,获得30
26秒前
高冷难神发布了新的文献求助10
32秒前
32秒前
33秒前
Raymond应助回忆杀采纳,获得10
33秒前
34秒前
34秒前
Yolo发布了新的文献求助10
37秒前
you秀的哈密瓜完成签到 ,获得积分10
37秒前
andy发布了新的文献求助10
38秒前
39秒前
Diana发布了新的文献求助10
39秒前
比大家发布了新的文献求助10
41秒前
大个应助傅宛白采纳,获得10
41秒前
HEIKU应助科研通管家采纳,获得10
44秒前
英俊的铭应助科研通管家采纳,获得20
44秒前
情怀应助科研通管家采纳,获得10
44秒前
科研通AI2S应助科研通管家采纳,获得10
44秒前
我是老大应助科研通管家采纳,获得10
44秒前
44秒前
科研通AI5应助科研通管家采纳,获得10
44秒前
zho应助科研通管家采纳,获得10
44秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778901
求助须知:如何正确求助?哪些是违规求助? 3324431
关于积分的说明 10218443
捐赠科研通 3039495
什么是DOI,文献DOI怎么找? 1668204
邀请新用户注册赠送积分活动 798591
科研通“疑难数据库(出版商)”最低求助积分说明 758440