Assistive AI in Lung Cancer Screening: A Retrospective Multinational Study in the United States and Japan

医学 回顾性队列研究 接收机工作特性 肺癌 工作流程 医学物理学 肺癌筛查 跨国公司 人工智能 普通外科 外科 病理 内科学 计算机科学 数据库 法学 政治学
作者
Atilla P. Kiraly,Corbin A. Cunningham,Ryan Najafi,Zaid Nabulsi,Jie Yang,Charles T. Lau,Joseph R. Ledsam,Wenxing Ye,Diego Ardila,Scott Mayer McKinney,Rory Pilgrim,Yun Liu,Hiroaki Saito,Yasuteru Shimamura,Mozziyar Etemadi,David Melnick,Sunny Jansen,Greg S. Corrado,Lily Peng,Daniel Tse
出处
期刊:Radiology [Radiological Society of North America]
卷期号:6 (3): e230079-e230079 被引量:10
标识
DOI:10.1148/ryai.230079
摘要

Purpose To evaluate the impact of an artificial intelligence (AI) assistant for lung cancer screening on multinational clinical workflows. Materials and Methods An AI assistant for lung cancer screening was evaluated on two retrospective randomized multireader multicase studies where 627 (141 cancer-positive cases) low-dose chest CT cases were each read twice (with and without AI assistance) by experienced thoracic radiologists (six U.S.-based or six Japan-based radiologists), resulting in a total of 7524 interpretations. Positive cases were defined as those within 2 years before a pathology-confirmed lung cancer diagnosis. Negative cases were defined as those without any subsequent cancer diagnosis for at least 2 years and were enriched for a spectrum of diverse nodules. The studies measured the readers' level of suspicion (on a 0-100 scale), country-specific screening system scoring categories, and management recommendations. Evaluation metrics included the area under the receiver operating characteristic curve (AUC) for level of suspicion and sensitivity and specificity of recall recommendations. Results With AI assistance, the radiologists' AUC increased by 0.023 (0.70 to 0.72; P = .02) for the U.S. study and by 0.023 (0.93 to 0.96; P = .18) for the Japan study. Scoring system specificity for actionable findings increased 5.5% (57% to 63%; P < .001) for the U.S. study and 6.7% (23% to 30%; P < .001) for the Japan study. There was no evidence of a difference in corresponding sensitivity between unassisted and AI-assisted reads for the U.S. (67.3% to 67.5%; P = .88) and Japan (98% to 100%; P > .99) studies. Corresponding stand-alone AI AUC system performance was 0.75 (95% CI: 0.70, 0.81) and 0.88 (95% CI: 0.78, 0.97) for the U.S.- and Japan-based datasets, respectively. Conclusion The concurrent AI interface improved lung cancer screening specificity in both U.S.- and Japan-based reader studies, meriting further study in additional international screening environments. Keywords: Assistive Artificial Intelligence, Lung Cancer Screening, CT Supplemental material is available for this article. Published under a CC BY 4.0 license.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
脑洞疼应助wuqi采纳,获得10
刚刚
乐乐应助zhang采纳,获得10
刚刚
月光族完成签到,获得积分10
1秒前
hzhang01发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
2秒前
Xiaoo完成签到,获得积分10
2秒前
欢呼傀斗完成签到,获得积分10
4秒前
1255475177完成签到 ,获得积分10
4秒前
田様应助赵鑫宇采纳,获得10
4秒前
李健应助kkk采纳,获得10
5秒前
5秒前
7秒前
Akim应助wyh采纳,获得10
8秒前
8秒前
刘勇完成签到,获得积分10
8秒前
9秒前
9秒前
万能图书馆应助liduo采纳,获得10
9秒前
英俊的铭应助小池采纳,获得10
11秒前
KON发布了新的文献求助10
11秒前
11秒前
ppat5012发布了新的文献求助10
12秒前
12秒前
13秒前
优美水彤完成签到,获得积分10
13秒前
15秒前
善学以致用应助Jiang采纳,获得10
15秒前
量子星尘发布了新的文献求助10
16秒前
灵巧鑫发布了新的文献求助10
16秒前
莘莘发布了新的文献求助10
16秒前
16秒前
香蕉发夹完成签到,获得积分10
17秒前
17秒前
17秒前
18秒前
科目三应助qxy采纳,获得10
18秒前
Orange应助118采纳,获得10
19秒前
LL发布了新的文献求助10
19秒前
隐形大米完成签到,获得积分10
20秒前
敏感的凝天完成签到,获得积分10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Theoretical modelling of unbonded flexible pipe cross-sections 2000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5532789
求助须知:如何正确求助?哪些是违规求助? 4621444
关于积分的说明 14578210
捐赠科研通 4561414
什么是DOI,文献DOI怎么找? 2499282
邀请新用户注册赠送积分活动 1479215
关于科研通互助平台的介绍 1450443