内科学
内分泌学
甘油三酯
PI3K/AKT/mTOR通路
化学
新陈代谢
医学
信号转导
生物化学
胆固醇
作者
Jie Zhang,Ziyu Liu,Yaojun Ni,Yang Yu,Fei Guo,Yanwen Lu,Xiaoqing Wang,Hairong Hao,Shayan Li,Wei Pan,Weinan Yu,Wen Hu
标识
DOI:10.1016/j.mce.2024.112164
摘要
Branched-chain amino acid (BCAA) metabolism is associated with triglyceride (TG) metabolism and the development of cardiovascular disease (CVD). However, the underlying mechanism remains uncertain. This study included 1302 subjects and followed for 4–5 years. A hyperbranched-chain aminoacidemia rat model was induced by high fructose diet (HFTD). The relationship between BCAAs and TG level and its regulatory mechanism was investigated in vitro. As results, as baseline BCAA percentile increased, subjects had higher prevalence and incidence of T2DM, NAFLD, and and CVD risk (P < 0.05). In animal model, the accumulation of BCAAs and TG and betatrophin expression were significantly elevated in the HFTD group when comparing with those in the SD group(P < 0.05). Immunofluorescence and Masson's trichrome staining revealed that the area of interstitial fibrosis was significantly increased in the HFTD group compared with control group. Met treatment significantly decreased TG levels and betatrophin expression and reversed myocardial fibrosis (P < 0.05). In vitro, LO2 cells, stimulated with 0.1–5 mM BCAAs, displayed a significant dose-dependent increase in betatrophin expression (P < 0.05). And 5 mM BCAAs stimulation significantly increased the p-mTOR and SREBP-1 expression (P < 0.05). However, this effect could be reversed by using the corresponding inhibitor or siRNAs. In conclusions, BCAAs promote occurrence and development of cardiovascular disease dependent on TG metabolism via activation of the mTOR/SREBP-1/betatrophin pathway. The study provides a new theory for the pathogenesis of CVD caused by amino acid metabolism disorders.
科研通智能强力驱动
Strongly Powered by AbleSci AI