亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Active fire detection in Landsat-8 imagery: A large-scale dataset and a deep-learning study

计算机科学 深度学习 卷积神经网络 人工智能 比例(比率) 领域(数学) 卫星图像 火灾探测 像素 遥感 模式识别(心理学) 机器学习 地图学 地理 数学 纯数学 物理 热力学
作者
Gabriel Henrique de Almeida Pereira,André Minoro Fusioka,Bogdan Tomoyuki Nassu,Rodrigo Minetto
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:178: 171-186 被引量:172
标识
DOI:10.1016/j.isprsjprs.2021.06.002
摘要

Active fire detection in satellite imagery is of critical importance to the management of environmental conservation policies, supporting decision-making and law enforcement. This is a well established field, with many techniques being proposed over the years, usually based on pixel or region-level comparisons involving sensor-specific thresholds and neighborhood statistics. In this paper, we address the problem of active fire detection using deep learning techniques. In recent years, deep learning techniques have been enjoying an enormous success in many fields, but their use for active fire detection is relatively new, with open questions and demand for datasets and architectures for evaluation. This paper addresses these issues by introducing a new large-scale dataset for active fire detection, with over 150,000 image patches (more than 200 GB of data) extracted from Landsat-8 images captured around the world in August and September 2020, containing wildfires in several locations. The dataset was split in two parts, and contains 10-band spectral images with associated outputs, produced by three well known handcrafted algorithms for active fire detection in the first part, and manually annotated masks in the second part. We also present a study on how different convolutional neural network architectures can be used to approximate these handcrafted algorithms, and how models trained on automatically segmented patches can be combined to achieve better performance than the original algorithms - with the best combination having 87.2% precision and 92.4% recall on our manually annotated dataset. The proposed dataset, source codes and trained models are available on Github (https://github.com/pereira-gha/activefire), creating opportunities for further advances in the field
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
魏欣娜发布了新的文献求助10
1秒前
8秒前
李爱国应助魏欣娜采纳,获得10
13秒前
CC完成签到,获得积分10
14秒前
15秒前
28秒前
ceeray23发布了新的文献求助30
31秒前
43秒前
49秒前
50秒前
yuxiazhengye发布了新的文献求助10
55秒前
1分钟前
yuxiazhengye完成签到,获得积分10
1分钟前
烟花应助supermaltose采纳,获得10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
supermaltose发布了新的文献求助10
1分钟前
1分钟前
1分钟前
冰可乐真的好喝完成签到,获得积分10
1分钟前
1分钟前
嘻嘻哈哈应助科研通管家采纳,获得10
1分钟前
嘻嘻哈哈应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
嘻嘻哈哈应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得20
1分钟前
赘婿应助冰可乐真的好喝采纳,获得50
1分钟前
开心超人发布了新的文献求助10
1分钟前
科研通AI2S应助cmz采纳,获得10
1分钟前
2分钟前
2分钟前
supermaltose完成签到,获得积分10
2分钟前
开心超人完成签到,获得积分20
2分钟前
2分钟前
DODO发布了新的文献求助10
2分钟前
cmz发布了新的文献求助10
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5482368
求助须知:如何正确求助?哪些是违规求助? 4583217
关于积分的说明 14388979
捐赠科研通 4512258
什么是DOI,文献DOI怎么找? 2472792
邀请新用户注册赠送积分活动 1459036
关于科研通互助平台的介绍 1432510