Methodology for spatio‐temporal predictions of traffic counts across an urban road network and generation of an on‐road greenhouse gas emission inventory

出租车 交通量统计 运输工程 温室气体 TRIPS体系结构 道路交通 环境科学 计算机科学 地理 交通量 工程类 生态学 生物
作者
Arman Ganji,Maryam Shekarrizfard,Aakash Harpalani,Jesse Coleman,Marianne Hatzopoulou
出处
期刊:Computer-aided Civil and Infrastructure Engineering [Wiley]
卷期号:35 (10): 1063-1084 被引量:15
标识
DOI:10.1111/mice.12508
摘要

Abstract On‐road emission inventories in urban areas have typically been developed using traffic data derived from travel demand models. These approaches tend to underestimate emissions because they often only incorporate data on household travel, not including commercial vehicle movements, taxis, ride hailing services, and other trips typically underreported within travel surveys. In contrast, traffic counts embed all types of on‐road vehicles; however, they are only conducted at selected locations in an urban area. Traffic counts are typically spatially correlated, which enables the development of methods that can interpolate traffic data at selected monitoring stations across an urban road network and in turn develop emission estimates. This paper presents a new and universal methodology designed to use traffic count data for the prediction of periodic and annual volumes as well as greenhouse gas emissions at the level of each individual roadway and for multiple years across a large road network. The methodology relies on the data collected and the spatio‐temporal relationships between traffic counts at various stations; it recognizes patterns in the data and identifies locations with similar trends. Traffic volumes and emissions prediction can be made even on roads where no count data exist. Data from the City of Toronto traffic count program were used to validate the output of various algorithms, indicating robust model performance, even in areas with limited data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
聪明大米发布了新的文献求助10
刚刚
菜菜子发布了新的文献求助10
1秒前
张雯雯完成签到,获得积分10
1秒前
丘比特应助咵嚓采纳,获得10
1秒前
投稿必中完成签到,获得积分10
2秒前
阿絮发布了新的文献求助20
2秒前
cc发布了新的文献求助10
3秒前
思源应助小橘子采纳,获得10
3秒前
巴哒完成签到,获得积分10
3秒前
4秒前
MT发布了新的文献求助10
5秒前
6秒前
愿景发布了新的文献求助10
6秒前
111发布了新的文献求助10
8秒前
WRZ完成签到 ,获得积分10
8秒前
专注半梅发布了新的文献求助30
9秒前
10秒前
10秒前
搜集达人应助糖果采纳,获得10
11秒前
NexusExplorer应助科研通管家采纳,获得10
11秒前
斯文败类应助科研通管家采纳,获得10
11秒前
华仔应助科研通管家采纳,获得10
11秒前
11秒前
orixero应助科研通管家采纳,获得10
11秒前
zwlcl发布了新的文献求助10
11秒前
赘婿应助科研通管家采纳,获得10
11秒前
星辰大海应助幸福大白采纳,获得10
12秒前
Owen应助科研通管家采纳,获得10
12秒前
顾矜应助幸福大白采纳,获得10
12秒前
李健应助科研通管家采纳,获得10
12秒前
李爱国应助幸福大白采纳,获得10
12秒前
bkagyin应助科研通管家采纳,获得10
12秒前
丘比特应助幸福大白采纳,获得10
12秒前
12秒前
FashionBoy应助科研通管家采纳,获得10
12秒前
Hello应助幸福大白采纳,获得10
13秒前
bkagyin应助科研通管家采纳,获得10
13秒前
Akim应助幸福大白采纳,获得30
13秒前
深情安青应助科研通管家采纳,获得10
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
줄기세포 생물학 1000
Biodegradable Embolic Microspheres Market Insights 888
Quantum reference frames : from quantum information to spacetime 888
Pediatric Injectable Drugs 500
Instant Bonding Epoxy Technology 500
Theoretical Justification and Institutional Construction of Pre-training Data Disclosure Obligations for AI Large Models 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4405483
求助须知:如何正确求助?哪些是违规求助? 3891058
关于积分的说明 12109259
捐赠科研通 3536039
什么是DOI,文献DOI怎么找? 1940194
邀请新用户注册赠送积分活动 981091
科研通“疑难数据库(出版商)”最低求助积分说明 877675