材料科学
曲折
锂(药物)
离子键合
电极
多孔性
离子
渗透(认知心理学)
粒子(生态学)
储能
纳米技术
化学物理
功率(物理)
复合材料
热力学
化学
神经科学
医学
生物
有机化学
物理化学
内分泌学
地质学
物理
海洋学
作者
Hamid Hamed,Saeed Yari,Jan D’Haen,Frank Uwe Renner,Naveen Reddy,An Hardy,Mohammadhosein Safari
标识
DOI:10.1002/aenm.202002492
摘要
Abstract A possible strategy to give a simultaneous boost to the energy and power attributes of the current generation of lithium‐ion batteries is developing thick porous electrodes with a high loading of active material alongside optimal percolation networks for the ions and electrons. However high the insertion capacity and kinetics of the single particle lithium‐insertion materials, the energy and power density of the cell can be capped by the ionic and electronic transport limitations in the porous electrode. In this work, a physical picture grounded in experiment and theory is proposed to spotlight and quantify the pivotal role of the micro‐scale porosity and active‐material loading in determining the tortuosity, effective transport properties, and performance limitations of porous electrodes. The outcome is a phenomenological picture coupled with a theoretical framework for the deconvolution of the relative shares of the electronic and ionic transport limitations over short and long ranges regarding the performance limitation of lithium‐ion batteries.
科研通智能强力驱动
Strongly Powered by AbleSci AI