黑森矩阵
西格玛
应用数学
数学
黑森方程
纯数学
组合数学
粘度
数学物理
数学分析
物理
微分方程
热力学
量子力学
一阶偏微分方程
摘要
In this paper, we consider the augmented Hessian equations $ S_k^{\frac{1}{k}}[D^2u+\sigma(x)I] = f(u) $ in $ \mathbb{R}^{n} $ or $ \mathbb{R}^{n}_+ $. We first give the necessary and sufficient condition of the existence of classical subsolutions to the equations in $ \mathbb{R}^{n} $ for $ \sigma(x) = \alpha $, which is an extended Keller-Osserman condition. Then we obtain the nonexistence of positive viscosity subsolutions of the equations in $ \mathbb{R}^{n} $ or $ \mathbb{R}^{n}_+ $ for $ f(u) = u^p $ with $ p>1 $.
科研通智能强力驱动
Strongly Powered by AbleSci AI