Engineering nanoporous and solid core-shell architectures of low-platinum alloy catalysts for high power density PEM fuel cells

纳米孔 质子交换膜燃料电池 材料科学 电催化剂 催化作用 化学工程 纳米技术 电流密度 铂金 功率密度 电极 化学 电化学 物理化学 生物化学 物理 功率(物理) 量子力学 工程类
作者
Yongqiang Kang,Jiaqi Wang,Yinping Wei,Yongle Wu,Dongsheng Xia,Lin Gan
出处
期刊:Nano Research [Springer Science+Business Media]
卷期号:15 (7): 6148-6155 被引量:36
标识
DOI:10.1007/s12274-022-4238-1
摘要

Low-platinum (Pt) alloy catalysts hold promising application in oxygen reduction reaction (ORR) electrocatalysis of proton-exchange-membrane fuel cells (PEMFCs). Although significant progress has been made to boost the kinetic ORR mass activity at low current densities in liquid half-cells, little attention was paid to the performance of Pt-based catalysts in realistic PEMFCs particularly at high current densities for high power density, which remains poorly understood. In this paper, we show that, regardless of the kinetic mass activity at the low current density region, the high current density performance of the low-Pt alloy catalysts is dominantly controlled by the total Pt surface area, particularly in low-Pt-loading H2-air PEMFCs. To this end, we propose two different strategies to boost the specific Pt surface area, the post-15-nm dealloyed nanoporous architecture and the sub-5-nm solid core-shell nanoparticles (NPs) through fluidic-bed synthesis, both of which bring in comparably high mass activity and high Pt surface area for large-current-density performance. At medium current density, the dealloyed porous NPs provide substantially higher H2-air PEMFC performance compared to solid core-shell catalysts, despite their similar mass activity in liquid half-cells. Scanning transmission electron microscopy images combined with electron energy loss spectroscopic imaging evidence a previously unreported “semi-immersed nanoporous-Pt/ionomer” structure in contrast to a “fully-immersed core-shell-Pt/ionomer” structure, thus favoring O2 transport and improving the fuel cell performance. Our results provide new insights into the role of Pt nanostructures in concurrently optimizing the mass activity, Pt surface area and Pt/Nafion interface for high power density fuel cells.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
membrane应助迷人成协采纳,获得10
1秒前
焱垚发布了新的文献求助30
1秒前
shx完成签到,获得积分10
2秒前
Orange应助搬砖美少女采纳,获得10
2秒前
Amy完成签到,获得积分10
3秒前
4秒前
doo完成签到,获得积分10
6秒前
雪白的紫翠应助Amy采纳,获得10
6秒前
7秒前
迷人成协完成签到,获得积分10
9秒前
yyyee完成签到,获得积分10
9秒前
9秒前
11秒前
沉静妙菡发布了新的文献求助10
11秒前
StevenCai完成签到,获得积分10
12秒前
Zoki发布了新的文献求助10
13秒前
13秒前
英姑应助念安采纳,获得10
14秒前
鲤鱼涔雨发布了新的文献求助10
16秒前
wangyamei发布了新的文献求助10
17秒前
乐观小之应助糯米采纳,获得10
17秒前
8R60d8应助但我的确采纳,获得10
17秒前
8R60d8应助但我的确采纳,获得10
17秒前
17秒前
21秒前
22秒前
xin完成签到 ,获得积分10
23秒前
law完成签到 ,获得积分10
23秒前
24秒前
24秒前
cxm发布了新的文献求助10
27秒前
Zoki完成签到,获得积分10
28秒前
研友_8KAjJn发布了新的文献求助10
28秒前
28秒前
传奇3应助miracle采纳,获得10
29秒前
34秒前
34秒前
DLY677完成签到,获得积分10
35秒前
火星上白羊完成签到,获得积分10
36秒前
36秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965102
求助须知:如何正确求助?哪些是违规求助? 3510413
关于积分的说明 11153130
捐赠科研通 3244755
什么是DOI,文献DOI怎么找? 1792550
邀请新用户注册赠送积分活动 873918
科研通“疑难数据库(出版商)”最低求助积分说明 804024