A framework based on multivariate distribution-based virtual sample generation and DNN for predicting water quality with small data

多元统计 数据挖掘 人工神经网络 计算机科学 样品(材料) 人口 水质 样本量测定 统计 机器学习 人工智能 数学 生态学 社会学 人口学 化学 生物 色谱法
作者
Ali El Bilali,Houda Lamane,Abdeslam Taleb,Ayoub Nafii
出处
期刊:Journal of Cleaner Production [Elsevier BV]
卷期号:368: 133227-133227 被引量:35
标识
DOI:10.1016/j.jclepro.2022.133227
摘要

Deep Neural Network (DNN) is a powerful tool for predicting and monitoring water quality. However, its application is only limited to well-monitored zones where the availability of data for training and validation phases. In this study, we attempt to develop a novel framework based on Multivariate distributions (MVD) (elliptical copulas)-based Virtual Sample Generation (VSG) method to broaden the application of DNN to predict water quality even with a small dataset. This framework is evaluated to predict the Entropy Weighted Water Quality Index (EWQI) using DNN and Electrical Conductivity, Temperature, and pH as input variables, in Berrechid and Chaouia aquifer systems, Morocco. Validation results showed that the virtual samples generated from 400, 50, 30, and 20 original samples improved the NSE from 0.88 to 0.92, from 0.53 to 0.91, from 0.42 to 0.91, and from 0.24 to 0.87, respectively. Besides, sensitivity analysis of the methodology to the virtual data sizes and the original samples showed that the RMSE and NSE of the DNN models have limits in function to virtual data sizes according to the first order Exponential Decay and logistic trends, respectively. These limits highly depend on original sample sizes. Such empirical trends are crucial for reproducing the proposed methodology in other sites to determine optimal virtual datasets. Overall, the proposed methodology provided new insights to improve the DNN model performances in predicting water quality with small datasets. Hence, it is useful to manage water quality in order to supply clean water for the population in poorly monitored zones. • Data availability is one of the limitations in applying DNN approach. • Existed Virtual Sample Generation methods are not capable to generate appropriate combinations of water quality parameters. • Copulas are valuable to generate virtual dataset for training DNN. • Small dataset with 20 original samples is sufficient to generate virtual data for training DNN. • Validation with sufficient observed data, 300 samples of groundwater.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
2秒前
mouxq发布了新的文献求助10
2秒前
Lichun完成签到,获得积分10
2秒前
Lucas应助TSL采纳,获得10
2秒前
4秒前
Sweater发布了新的文献求助10
4秒前
不知名的小蜜蜂完成签到,获得积分10
4秒前
Lichun发布了新的文献求助10
5秒前
Hhh发布了新的文献求助10
7秒前
亘古完成签到,获得积分10
8秒前
成就的元槐完成签到,获得积分10
9秒前
悦雨发布了新的文献求助10
9秒前
瓦猫发布了新的文献求助20
9秒前
Qiao应助魔幻的慕梅采纳,获得10
12秒前
Ava应助梅坤采纳,获得10
13秒前
小菜鸡应助亘古采纳,获得10
14秒前
Wwwwww完成签到,获得积分10
14秒前
15秒前
18秒前
pkqbkl发布了新的文献求助10
20秒前
量子星尘发布了新的文献求助10
20秒前
20秒前
mmmmmMM完成签到,获得积分10
21秒前
归尘发布了新的文献求助50
22秒前
zhangxin完成签到,获得积分10
23秒前
吴泽旭完成签到,获得积分10
23秒前
24秒前
Loki完成签到,获得积分10
24秒前
26秒前
BCS完成签到,获得积分10
29秒前
合适的半青完成签到,获得积分10
30秒前
哇哦发布了新的文献求助10
31秒前
Zyk完成签到,获得积分10
33秒前
在水一方应助XiaodongWang采纳,获得10
34秒前
Fury发布了新的文献求助10
36秒前
36秒前
小蘑菇应助摆烂好爽采纳,获得10
37秒前
chouchou完成签到,获得积分20
38秒前
38秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Local Grammar Approaches to Speech Act Studies 5000
Plutonium Handbook 4000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Functional High Entropy Alloys and Compounds 1000
Building Quantum Computers 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 900
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4224566
求助须知:如何正确求助?哪些是违规求助? 3757823
关于积分的说明 11812405
捐赠科研通 3419669
什么是DOI,文献DOI怎么找? 1876828
邀请新用户注册赠送积分活动 930303
科研通“疑难数据库(出版商)”最低求助积分说明 838540