A survey on QoT prediction using machine learning in optical networks

计算机科学 机器学习 人工智能
作者
Lu Zhang,Xin Li,Ying Tang,Jingjie Xin,Shanguo Huang
出处
期刊:Optical Fiber Technology [Elsevier BV]
卷期号:68: 102804-102804 被引量:23
标识
DOI:10.1016/j.yofte.2021.102804
摘要

• QoT prediction problem in optical networks is elaborated, including the main QoT influence factors, QoT metrics, and QoT prediction strategies. • The QoT prediction model construction is reviewed from four aspects, i.e., ML algorithm selection, dataset generation, ML frameworks, construction process of QoT prediction model. • Three kinds of QoT prediction solutions are traditional ML based QoT prediction models, transfer learning or/and active learning assisted QoT prediction models, and APLMs with ML. • Some future research directions are proposed, including digital twin based QoT prediction and transfer learning assisted light-trees QoT prediction, pre-weighted input features for QoT prediction, and improvement in adaptability of QoT prediction model. In optical networks, a connection (e.g., light-path and light-tree) is set up to carry data from its source to destination(s). When the optical signal transmits through the fiber links and optical devices, the quality of transmission (QoT) degrades due to various physical layer impairments (PLIs), including linear and nonlinear impairments. QoT is an important metric that determines the availability of a connection. Therefore, the QoT guarantee is the premise of successful connection establishment in optical networks. QoT prediction before connections establishment can provide guidance for the routing and resources allocation of connections. In order to receive the correct signal at the receiving end, during network planning design margins are introduced to compensate the inaccuracy of the QoT prediction model itself and its inputs. Improving the accuracy of prediction can make better use of network resources and reduce margins. With the help of strong computing power and data acquisition based on software defined optical network (SDON), machine learning (ML) based models are more suitable for QoT prediction than analytical models that are difficult to derive and computationally heavy. This paper provides an overview on the applications of ML technologies in QoT prediction. Firstly, we elaborate the QoT problem in optical networks, including main QoT influence factors, QoT metrics, and QoT prediction strategies. Then, suitable ML algorithms, the generation of sample data, ML frameworks and the construction of QoT prediction model, are briefly introduced. Next, three solutions of QoT prediction using various ML technologies in recent studies and their practical feasibility are reviewed and discussed in detail. Finally, based on the existing researches, we present some future research directions about the improvement of QoT prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ccqqww完成签到,获得积分10
刚刚
刚刚
动漫大师发布了新的文献求助10
刚刚
田様应助无尽夏采纳,获得10
1秒前
tony完成签到,获得积分10
1秒前
潘宋完成签到,获得积分10
1秒前
hero_ljw发布了新的文献求助20
1秒前
2秒前
科研小白完成签到 ,获得积分10
3秒前
清脆无颜发布了新的文献求助10
3秒前
九儿完成签到 ,获得积分10
4秒前
尼禄完成签到,获得积分10
4秒前
英俊的铭应助sen123采纳,获得10
4秒前
lixiang发布了新的文献求助10
4秒前
JamesPei应助WANG采纳,获得10
4秒前
Chroninus发布了新的文献求助10
5秒前
5秒前
zho发布了新的文献求助10
5秒前
liuxshan发布了新的文献求助10
5秒前
钩子89完成签到,获得积分10
5秒前
花落夏海完成签到,获得积分20
6秒前
ccqqww发布了新的文献求助10
6秒前
7秒前
科研通AI5应助xzn1123采纳,获得10
7秒前
7秒前
兔兔完成签到,获得积分10
7秒前
科研通AI5应助letter采纳,获得10
8秒前
科研通AI5应助咸云采纳,获得10
8秒前
9秒前
9秒前
科目三应助张张磊采纳,获得10
10秒前
罐罐完成签到,获得积分10
10秒前
10秒前
11秒前
卡卡西应助WQ采纳,获得20
11秒前
12秒前
Akim应助Mmmm采纳,获得10
12秒前
cdercder应助敬老院N号采纳,获得10
12秒前
cdercder应助敬老院N号采纳,获得10
12秒前
cdercder应助敬老院N号采纳,获得10
12秒前
高分求助中
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Hardness Tests and Hardness Number Conversions 300
Knowledge management in the fashion industry 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3816654
求助须知:如何正确求助?哪些是违规求助? 3360106
关于积分的说明 10406570
捐赠科研通 3078132
什么是DOI,文献DOI怎么找? 1690563
邀请新用户注册赠送积分活动 813815
科研通“疑难数据库(出版商)”最低求助积分说明 767883