HMCKRAutoEncoder: An Interpretable Deep Learning Framework for Time Series Analysis

可解释性 计算机科学 自编码 人工智能 深度学习 机器学习 时间序列 黑匣子 特征学习 管道(软件) 代表(政治) 政治学 政治 程序设计语言 法学
作者
Jilong Wang,Rui Li,Renfa Li,Bin Fu,Danny Z. Chen
出处
期刊:IEEE Transactions on Emerging Topics in Computing [Institute of Electrical and Electronics Engineers]
卷期号:10 (1): 99-111 被引量:1
标识
DOI:10.1109/tetc.2022.3143154
摘要

Analysis of time series data has long been a problem of great interest in a wide range of fields, such as medical surveillance, gene expression analysis, and economic forecasting. Recently, there has been a renewed interest in time series analysis with deep learning, since deep learning models can achieve state-of-the-art results on various tasks. However, deep learning models such as DNNs have a huge parametric space, which makes DNNs be viewed as complex “black-box” models. We propose a novel framework, HMCKRAutoEncoder, which adopts a two-task learning method to construct a human-machine collaborative knowledge representation (HMCKR) on a hidden layer of an AutoEncoder, to address the “black-box” problem in deep learning based time series analysis. In our framework, the AutoEncoder model is cross-trained by two learning tasks, aiming to generate HMCKR on a hidden layer of the AutoEncoder. We propose a pipeline for HMCKR-based time series analysis for various tasks. Moreover, a human-in-the-loop (HIL) mechanism is introduced to provide humans with the ability to intervene with the decision-making of deep models. Experimental results on three datasets demonstrate that our method is consistently comparable with several state-of-the-art methods while providing interpretability, and outperforms these methods when the HIL mechanism is applied.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
程绪洋发布了新的文献求助10
1秒前
2秒前
故意的亦竹完成签到,获得积分10
2秒前
任性的外套完成签到 ,获得积分10
2秒前
lyh发布了新的文献求助10
4秒前
eryu25完成签到,获得积分10
4秒前
陈毅完成签到,获得积分20
4秒前
5秒前
研友_VZG7GZ应助轻松无剑采纳,获得10
6秒前
JL发布了新的文献求助10
6秒前
完美世界应助执着傲柏采纳,获得10
6秒前
hhj发布了新的文献求助10
7秒前
傲娇的行恶完成签到,获得积分20
7秒前
可爱的函函应助研友_LNB7rL采纳,获得10
8秒前
今后应助婷玉采纳,获得10
9秒前
9秒前
BLUE发布了新的文献求助20
10秒前
轮子发布了新的文献求助10
10秒前
咔嚓完成签到,获得积分10
12秒前
13秒前
bingo发布了新的文献求助10
13秒前
酷波er应助lyh采纳,获得10
13秒前
niNe3YUE应助狂野的厉采纳,获得10
13秒前
13秒前
13秒前
Owen应助hhj采纳,获得10
15秒前
开放的绮琴应助小熊宝宝采纳,获得10
16秒前
wzhnb发布了新的文献求助10
16秒前
18秒前
陈毅发布了新的文献求助30
19秒前
执着傲柏发布了新的文献求助10
20秒前
21秒前
Cyber_relic完成签到,获得积分10
21秒前
22秒前
SciGPT应助墨客采纳,获得10
24秒前
24秒前
wjt发布了新的文献求助10
24秒前
轮子完成签到,获得积分10
25秒前
HamzaAnsari完成签到,获得积分10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557467
求助须知:如何正确求助?哪些是违规求助? 4642491
关于积分的说明 14668341
捐赠科研通 4583911
什么是DOI,文献DOI怎么找? 2514433
邀请新用户注册赠送积分活动 1488818
关于科研通互助平台的介绍 1459439