已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Automated Disaster Monitoring From Social Media Posts Using AI-Based Location Intelligence and Sentiment Analysis

社会化媒体 计算机科学 情绪分析 自然灾害 人工智能 精确性和召回率 应急管理 机器学习 数据科学 自然语言处理 万维网 地理 政治学 气象学 法学
作者
Fahim Sufi,Ibrahim Khalil
出处
期刊:IEEE Transactions on Computational Social Systems [Institute of Electrical and Electronics Engineers]
卷期号:11 (4): 4614-4624 被引量:89
标识
DOI:10.1109/tcss.2022.3157142
摘要

Worldwide disasters like bushfires, earthquakes, floods, cyclones, and heatwaves have affected the lives of social media users in an unprecedented manner. They are constantly posting their level of negativity over the disaster situations at their location of interest. Understanding location-oriented sentiments about disaster situation is of prime importance for political leaders, and strategic decision-makers. To this end, we present a new fully automated algorithm based on artificial intelligence (AI) and natural language processing (NLP), for extraction of location-oriented public sentiments on global disaster situation. We designed the proposed system to obtain exhaustive knowledge and insights on social media feeds related to disaster in 110 languages through AI- and NLP-based sentiment analysis, named entity recognition (NER), anomaly detection, regression, and Getis Ord Gi* algorithms. We deployed and tested this algorithm on live Twitter feeds from 28 September to 6 October 2021. Tweets with 67 515 entities in 39 different languages were processed during this period. Our novel algorithm extracted 9727 location entities with greater than 70% confidence from live Twitter feed and displayed the locations of possible disasters with disaster intelligence. The rates of average precision, recall, and F₁-Score were measured to be 0.93, 0.88, and 0.90, respectively. Overall, the fully automated disaster monitoring solution demonstrated 97% accuracy. To the best of our knowledge, this study is the first to report location intelligence with NER, sentiment analysis, regression and anomaly detection on social media messages related to disasters and has covered the largest set of languages.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
慧1111111应助斯文落雁采纳,获得10
3秒前
5秒前
5秒前
6秒前
CodeCraft应助gx采纳,获得10
6秒前
无糖乐发布了新的文献求助10
7秒前
CodeCraft应助zby采纳,获得10
7秒前
夏森发布了新的文献求助10
8秒前
8秒前
善学以致用应助ale采纳,获得10
8秒前
月野桃玖完成签到 ,获得积分10
12秒前
糯糯完成签到,获得积分10
12秒前
13秒前
爆米花应助li8888lili8888采纳,获得10
13秒前
17秒前
ee_Liu发布了新的文献求助50
19秒前
Li发布了新的文献求助10
19秒前
21秒前
gx发布了新的文献求助10
21秒前
无糖乐完成签到,获得积分20
22秒前
斯文败类应助么大人采纳,获得10
23秒前
huangqx完成签到 ,获得积分10
23秒前
君君完成签到,获得积分10
25秒前
Ymir发布了新的文献求助10
25秒前
充电宝应助粗犷的元风采纳,获得10
27秒前
君君发布了新的文献求助10
28秒前
28秒前
郭郭要努力ya完成签到 ,获得积分10
28秒前
柚子完成签到 ,获得积分10
31秒前
yydragen应助lars采纳,获得30
31秒前
33秒前
CipherSage应助善良的道消采纳,获得10
35秒前
dd99081发布了新的文献求助10
35秒前
传奇3应助yy采纳,获得10
36秒前
喜悦的虔发布了新的文献求助10
36秒前
萝卜发布了新的文献求助50
37秒前
38秒前
单纯的又菱完成签到,获得积分10
41秒前
41秒前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 1000
Global Eyelash Assessment scale (GEA) 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4047311
求助须知:如何正确求助?哪些是违规求助? 3585151
关于积分的说明 11394472
捐赠科研通 3312485
什么是DOI,文献DOI怎么找? 1822608
邀请新用户注册赠送积分活动 894536
科研通“疑难数据库(出版商)”最低求助积分说明 816351