波姆裂殖酵母
蛋白酵素
生物化学
融合蛋白
异源表达
酿酒酵母
化学
生物
重组DNA
基因
酶
作者
Babbal,Shilpa Mohanty,Govinda Rao Dabburu,Manish Kumar,Yogender Pal Khasa
标识
DOI:10.1016/j.ijbiomac.2022.04.078
摘要
Small ubiquitin-related modifier (SUMO) proteins are efficiently used to target the soluble expression of various difficult-to-express proteins in E. coli. However, its utilization in large scale protein production is restricted by the higher cost of Ulp, which is required to cleave SUMO fusion tag from protein-of-interest to generate an authentic N-terminus. This study identified and characterized two novel SUMO proteases i.e., Ulp1 and Ulp2 from Schizosaccharomyces pombe. Codon-optimized gene sequences were cloned and expressed in E. coli. The sequence and structure of SpUlp1 and SpUlp2 catalytic domains were deduced using bioinformatics tools. Protein-protein interaction studies predicted the higher affinity of SpUlp1 towards SUMO compared to its counterpart from Saccharomyces cerevisiae (ScUlp1). The catalytic domain of SpUlp1 was purified using Ni-NTA chromatography with 83.33% recovery yield. Moreover, In vitro activity data further confirmed the fast-acting nature of SpUlp1 catalytic domain, where a 90% cleavage of fusion proteins was obtained within 1 h of incubation, indicating novelty and commercial relevance of S. pombe Ulp1. Biophysical characterization showed 8.8% α-helices, 36.7% β-sheets in SpUlp1SD. From thermal CD and fluorescence data, SpUlp1SD Tm was found to be 45 °C. Further, bioprocess optimization using fed-batch cultivation resulted in 3.5 g/L of SpUlp1SD production with YP/X of 77.26 mg/g DCW and volumetric productivity of 205.88 mg/L/h.
科研通智能强力驱动
Strongly Powered by AbleSci AI