亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep learning for lung cancer prognostication: A retrospective multi-cohort radiomics study

医学 放射治疗 肺癌 接收机工作特性 回顾性队列研究 无线电技术 队列 内科学 放射科 外科
作者
Ahmed Hosny,Chintan Parmar,Thibaud P. Coroller,Patrick Grossmann,Roman Zeleznik,Avnish Kumar,Johan Bussink,Robert J. Gillies,Raymond H. Mak,Hugo J.W.L. Aerts
出处
期刊:PLOS Medicine [Public Library of Science]
卷期号:15 (11): e1002711-e1002711 被引量:336
标识
DOI:10.1371/journal.pmed.1002711
摘要

Non-small-cell lung cancer (NSCLC) patients often demonstrate varying clinical courses and outcomes, even within the same tumor stage. This study explores deep learning applications in medical imaging allowing for the automated quantification of radiographic characteristics and potentially improving patient stratification.We performed an integrative analysis on 7 independent datasets across 5 institutions totaling 1,194 NSCLC patients (age median = 68.3 years [range 32.5-93.3], survival median = 1.7 years [range 0.0-11.7]). Using external validation in computed tomography (CT) data, we identified prognostic signatures using a 3D convolutional neural network (CNN) for patients treated with radiotherapy (n = 771, age median = 68.0 years [range 32.5-93.3], survival median = 1.3 years [range 0.0-11.7]). We then employed a transfer learning approach to achieve the same for surgery patients (n = 391, age median = 69.1 years [range 37.2-88.0], survival median = 3.1 years [range 0.0-8.8]). We found that the CNN predictions were significantly associated with 2-year overall survival from the start of respective treatment for radiotherapy (area under the receiver operating characteristic curve [AUC] = 0.70 [95% CI 0.63-0.78], p < 0.001) and surgery (AUC = 0.71 [95% CI 0.60-0.82], p < 0.001) patients. The CNN was also able to significantly stratify patients into low and high mortality risk groups in both the radiotherapy (p < 0.001) and surgery (p = 0.03) datasets. Additionally, the CNN was found to significantly outperform random forest models built on clinical parameters-including age, sex, and tumor node metastasis stage-as well as demonstrate high robustness against test-retest (intraclass correlation coefficient = 0.91) and inter-reader (Spearman's rank-order correlation = 0.88) variations. To gain a better understanding of the characteristics captured by the CNN, we identified regions with the most contribution towards predictions and highlighted the importance of tumor-surrounding tissue in patient stratification. We also present preliminary findings on the biological basis of the captured phenotypes as being linked to cell cycle and transcriptional processes. Limitations include the retrospective nature of this study as well as the opaque black box nature of deep learning networks.Our results provide evidence that deep learning networks may be used for mortality risk stratification based on standard-of-care CT images from NSCLC patients. This evidence motivates future research into better deciphering the clinical and biological basis of deep learning networks as well as validation in prospective data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可可完成签到 ,获得积分10
8秒前
27秒前
28秒前
熊啊发布了新的文献求助10
34秒前
lj发布了新的文献求助10
36秒前
Ava应助krajicek采纳,获得10
36秒前
NexusExplorer应助熊啊采纳,获得10
43秒前
lj完成签到,获得积分10
44秒前
49秒前
krajicek发布了新的文献求助10
54秒前
排骨大王完成签到,获得积分10
54秒前
1分钟前
1分钟前
灵巧灵松发布了新的文献求助10
1分钟前
1分钟前
Jiayi完成签到 ,获得积分10
1分钟前
1分钟前
熊啊发布了新的文献求助10
1分钟前
1分钟前
2分钟前
Hello应助梦想家采纳,获得10
2分钟前
bocky完成签到 ,获得积分10
2分钟前
滕皓轩完成签到 ,获得积分20
2分钟前
2分钟前
3分钟前
3分钟前
h0jian09完成签到,获得积分10
3分钟前
3分钟前
3分钟前
Akim应助krajicek采纳,获得30
3分钟前
3分钟前
4分钟前
4分钟前
4分钟前
krajicek发布了新的文献求助30
4分钟前
4分钟前
Frank完成签到,获得积分10
5分钟前
5分钟前
5分钟前
norberta发布了新的文献求助10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4568866
求助须知:如何正确求助?哪些是违规求助? 3991276
关于积分的说明 12355594
捐赠科研通 3663388
什么是DOI,文献DOI怎么找? 2018871
邀请新用户注册赠送积分活动 1053272
科研通“疑难数据库(出版商)”最低求助积分说明 940874