A radiomics approach based on support vector machine using MR images for preoperative lymph node status evaluation in intrahepatic cholangiocarcinoma

四分位间距 支持向量机 列线图 医学 放射科 肝内胆管癌 人工智能 计算机科学 内科学
作者
Lei Xu,Pengfei Yang,Wenjie Liang,Weihai Liu,Weigen Wang,Chen Luo,Jing Wang,Zhangli Peng,Xing Li,Mingyan Huang,Shusen Zheng,Tianye Niu
出处
期刊:Theranostics [Ivyspring International Publisher]
卷期号:9 (18): 5374-5385 被引量:83
标识
DOI:10.7150/thno.34149
摘要

Purpose: Accurate lymph node (LN) status evaluation for intrahepatic cholangiocarcinoma (ICC) patients is essential for surgical planning. This study aimed to develop and validate a prediction model for preoperative LN status evaluation in ICC patients. Methods and Materials: A group of 106 ICC patients, who were diagnosed between April 2011 and February 2016, was used for prediction model training. Image features were extracted from T1-weighted contrast-enhanced MR images. A support vector machine (SVM) model was built by using the most LN status-related features, which were selected using the maximum relevance minimum redundancy (mRMR) algorithm. The mRMR method ranked each feature according to its relevance to the LN status and redundancy with other features. An SVM score was calculated for each patient to reflect the LN metastasis (LNM) probability from the SVM model. Finally, a combination nomogram was constructed by incorporating the SVM score and clinical features. An independent group of 42 patients who were diagnosed from March 2016 to November 2017 was used to validate the prediction models. The model performances were evaluated on discrimination, calibration, and clinical utility. Results: The SVM model was constructed based on five selected image features. Significant differences were found between patients with LNM and non-LNM in SVM scores in both groups (the training group: 0.5466 (interquartile range (IQR), 0.4059-0.6985) vs. 0.3226 (IQR, 0.0527-0.4659), P<0.0001; the validation group: 0.5831 (IQR, 0.3641-0.8162) vs. 0.3101 (IQR, 0.1029-0.4661), P=0.0015). The combination nomogram based on the SVM score, the CA 19-9 level, and the MR-reported LNM factor showed better discrimination in separating patients with LNM and non-LNM, comparing to the SVM model alone (AUC: the training group: 0.842 vs. 0.788; the validation group: 0.870 vs. 0.787). Favorable clinical utility was observed using the decision curve analysis for the nomogram. Conclusion: The nomogram, incorporating the SVM score, CA 19-9 level and the MR-reported LNM factor, provided an individualized LN status evaluation and helped clinicians guide the surgical decisions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研小白完成签到,获得积分10
7秒前
YOLK97完成签到,获得积分10
8秒前
wzx完成签到,获得积分10
12秒前
13秒前
yu完成签到,获得积分10
13秒前
vn完成签到,获得积分10
14秒前
科研通AI5应助努力采纳,获得10
14秒前
阿盛完成签到,获得积分10
14秒前
小刘科研顺利完成签到 ,获得积分10
16秒前
qiao应助tsukinineko采纳,获得10
18秒前
iNk应助友好的难敌采纳,获得10
20秒前
21秒前
21秒前
ixueyi完成签到,获得积分10
22秒前
24秒前
小魏给小魏的求助进行了留言
26秒前
科研通AI5应助想吃榴莲采纳,获得30
26秒前
个性跳跳糖完成签到,获得积分10
30秒前
外星人完成签到 ,获得积分10
31秒前
yunshan完成签到,获得积分10
32秒前
33秒前
liu完成签到,获得积分10
34秒前
慕青应助贾明霞采纳,获得10
35秒前
yunshan发布了新的文献求助10
38秒前
顾瞻完成签到,获得积分10
42秒前
42秒前
43秒前
自己哭哭完成签到 ,获得积分10
43秒前
pokexuejiao发布了新的文献求助30
46秒前
48秒前
48秒前
孙义善发布了新的文献求助10
49秒前
49秒前
贾明霞完成签到,获得积分10
49秒前
坚强觅珍完成签到 ,获得积分10
49秒前
nulinuli完成签到 ,获得积分10
50秒前
研友_Zzrx6Z发布了新的文献求助10
52秒前
努力发布了新的文献求助10
54秒前
向日繁花发布了新的文献求助10
54秒前
曾经不言发布了新的文献求助10
54秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781213
求助须知:如何正确求助?哪些是违规求助? 3326729
关于积分的说明 10228166
捐赠科研通 3041776
什么是DOI,文献DOI怎么找? 1669591
邀请新用户注册赠送积分活动 799118
科研通“疑难数据库(出版商)”最低求助积分说明 758751