Recognition of Car Front Facing Style for Machine-Learning Data Annotation: A Quantitative Approach

注释 风格(视觉艺术) 计算机科学 透视图(图形) 人工智能 绘图 特征(语言学) 机器学习 数据挖掘 计算机图形学(图像) 语言学 历史 哲学 考古
作者
Lisha Ma,Yu Tzu Wu,Qingnan Li,Xiaofang Yuan
出处
期刊:Symmetry [MDPI AG]
卷期号:14 (6): 1181-1181 被引量:1
标识
DOI:10.3390/sym14061181
摘要

Car front facing style (CFFS) recognition is crucial to enhancing a company’s market competitiveness and brand image. However, there is a problem impeding its development: with the sudden increase in style design information, the traditional methods, based on feature calculation, are insufficient to quickly handle style analysis with a large volume of data. Therefore, we introduced a deep feature-based machine learning approach to solve the problem. Datasets are the basis of machine learning, but there is a lack of references for car style data annotations, which can lead to unreliable style data annotation. Therefore, a CFFS recognition method was proposed for machine-learning data annotation. Specifically, this study proposes a hierarchical model for analyzing CFFS style from the morphological perspective of layout, surface, graphics, and line. Based on the quantitative percentage of the three elements of style, this paper categorizes the CFFS into eight basic types of style and distinguishes the styles by expert analysis to summarize the characteristics of each layout, shape surface, and graphics. We use imagery diagrams and typical CFFS examples and characteristic laws of each style as annotation references to guide manual annotation data. This investigation established a CFFS dataset with eight types of style. The method was evaluated from a design perspective; we found that the accuracy obtained when using this method for CFFS data annotation exceeded that obtained when not using this method by 32.03%. Meanwhile, we used Vgg19, ResNet, ViT, MAE, and MLP-Mixer, five classic classifiers, to classify the dataset; the average accuracy rates were 76.75%, 78.47%, 78.07%, 75.80%, and 81.06%. This method effectively transforms human design knowledge into machine-understandable structured knowledge. There is a symmetric transformation of knowledge in the computer-aided design process, providing a reference for machine learning to deal with abstract style problems.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
麻花阳应助甜馨采纳,获得10
6秒前
8秒前
9秒前
11秒前
昵称完成签到 ,获得积分10
13秒前
14秒前
Aliangkou完成签到,获得积分10
14秒前
健忘怜雪发布了新的文献求助10
15秒前
17秒前
共享精神应助Dewcy采纳,获得10
17秒前
南窗学者完成签到 ,获得积分10
18秒前
是我呀吼发布了新的文献求助20
19秒前
蓝天应助argb_pump采纳,获得10
20秒前
舒适蜗牛完成签到,获得积分10
22秒前
23秒前
25秒前
26秒前
27秒前
wt完成签到,获得积分10
27秒前
顾矜应助健忘怜雪采纳,获得10
28秒前
iuuuu完成签到 ,获得积分10
29秒前
30秒前
勤劳菠萝发布了新的文献求助10
30秒前
JamesPei应助没有答案采纳,获得10
31秒前
liuxh123发布了新的文献求助10
32秒前
Dewcy发布了新的文献求助10
32秒前
32秒前
33秒前
34秒前
34秒前
34秒前
34秒前
子怡完成签到,获得积分10
35秒前
JamesPei应助科研通管家采纳,获得10
36秒前
SciGPT应助科研通管家采纳,获得10
36秒前
Lynk369发布了新的文献求助10
36秒前
我是老大应助科研通管家采纳,获得10
36秒前
领导范儿应助科研通管家采纳,获得10
36秒前
乐乐应助科研通管家采纳,获得10
36秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Psychology and Work Today 1400
Operational Bulk Evaporation Duct Model for MORIAH Version 1.2 1200
Variants in Economic Theory 1000
Global Ingredients & Formulations Guide 2014, Hardcover 1000
Research for Social Workers 1000
Signals, Systems, and Signal Processing 880
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5838185
求助须知:如何正确求助?哪些是违规求助? 6130295
关于积分的说明 15600666
捐赠科研通 4956370
什么是DOI,文献DOI怎么找? 2671576
邀请新用户注册赠送积分活动 1616754
关于科研通互助平台的介绍 1571871