亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Accelerating the oxygen adsorption kinetics to regulate the oxygen reduction catalysis via Fe3C nanoparticles coupled with single Fe-N4 sites

催化作用 氧还原 材料科学 吸附 氧还原反应 动力学 氧气 还原(数学) 化学工程 纳米颗粒 纳米技术 物理化学 化学 有机化学 电极 电化学 物理 工程类 几何学 量子力学 数学
作者
Chuanlan Xu,Chaozhong Guo,Jianping Liu,Bihao Hu,Jiangyou Dai,Mao Wang,Rong Jin,Zhongli Luo,Honglin Li,Changguo Chen
出处
期刊:Energy Storage Materials [Elsevier BV]
卷期号:51: 149-158 被引量:54
标识
DOI:10.1016/j.ensm.2022.06.038
摘要

• The single-atom Fe catalyst was synthesized by Fe 3 C|Fe-N 4 coupled sites on 1D and 2D doped-carbon structures. • The formed Fe 3 C|Fe-N 4 sites can positively regulate the electronic structure of the Fe center in the catalyst. • DFT calculations indicate that the adjacent Fe 3 C activated single Fe-N 4 sites accelerate the oxygen adsorption kinetics. • The catalyst assembled ZABs manifested a higher power density and better stability than the Pt/C-based ZABs. Manipulating the electronic structure of Fe-N 4 single-sites to accelerate the oxygen adsorption kinetics is a commendable approach to improve the oxygen reduction reaction (ORR) performance of single-atom Fe catalysts but remains a challenge. Here we propose an endogenous regulation strategy to in situ design the single-atom Fe catalyst (Fe 3 C@NCNTs) derived from 1,8-diaminonaphthalene, iron trichloride, and graphitic carbon nitride via Fe-N 4 single-sites strongly coupled with Fe 3 C nanostructures, in which the combination of 1D and 2D doped-carbon structures and the formation of Fe 3 C|Fe-N 4 coupled sites can endow the catalyst with a considerably enhanced electrocatalytic activity and remarkable cycling stability to the ORR in Zn-air batteries. Theoretical calculations further reveal that endogenous Fe 3 C nanostructures can effectively activate the atomically dispersed Fe-N 4 sites, narrowing the energy barriers of the rate-limiting steps of ORR to promote the ORR catalytic performance. This work provides an effective way to in situ tune the electronic structure of metal atoms to boost the ORR performance of single-atom catalysts for electrochemical energy systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1分钟前
1分钟前
1分钟前
2分钟前
拓跋涵易完成签到,获得积分10
3分钟前
香蕉觅云应助科研通管家采纳,获得10
3分钟前
科研通AI5应助Marciu33采纳,获得10
3分钟前
Ava应助整齐道消采纳,获得10
3分钟前
平常的毛豆应助puzhongjiMiQ采纳,获得10
4分钟前
FashionBoy应助puzhongjiMiQ采纳,获得10
4分钟前
Accepted应助puzhongjiMiQ采纳,获得10
4分钟前
平常的毛豆应助puzhongjiMiQ采纳,获得10
4分钟前
Lucas应助puzhongjiMiQ采纳,获得10
4分钟前
orixero应助puzhongjiMiQ采纳,获得10
4分钟前
4分钟前
整齐道消发布了新的文献求助10
4分钟前
puzhongjiMiQ完成签到,获得积分10
4分钟前
5分钟前
5分钟前
丘比特应助重要纸飞机采纳,获得10
5分钟前
5分钟前
Marciu33发布了新的文献求助10
6分钟前
整齐道消完成签到,获得积分10
6分钟前
Marciu33完成签到,获得积分10
6分钟前
科研通AI5应助Marciu33采纳,获得10
6分钟前
善学以致用应助整齐道消采纳,获得10
6分钟前
领导范儿应助科研通管家采纳,获得10
7分钟前
7分钟前
7分钟前
yuqinghui98完成签到 ,获得积分10
7分钟前
整齐道消发布了新的文献求助10
7分钟前
wujiwuhui完成签到 ,获得积分10
8分钟前
逝水无痕发布了新的文献求助10
9分钟前
陈好好完成签到 ,获得积分10
9分钟前
丘比特应助科研通管家采纳,获得10
11分钟前
yy发布了新的文献求助10
11分钟前
yy完成签到,获得积分10
12分钟前
morina9301完成签到,获得积分10
12分钟前
houyp0326完成签到,获得积分10
12分钟前
在水一方应助Emon采纳,获得10
13分钟前
高分求助中
The world according to Garb 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Mass producing individuality 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3819930
求助须知:如何正确求助?哪些是违规求助? 3362797
关于积分的说明 10418814
捐赠科研通 3081174
什么是DOI,文献DOI怎么找? 1694991
邀请新用户注册赠送积分活动 814788
科研通“疑难数据库(出版商)”最低求助积分说明 768522