已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Machine learning approaches for biomolecular, biophysical, and biomaterials research

计算机科学 过程(计算) 背景(考古学) 数据科学 对话 人工智能 生物学数据 生物信息学 生物 古生物学 语言学 哲学 操作系统
作者
Carolin A. Rickert,Oliver Lieleg
出处
期刊:Biophysics reviews [American Institute of Physics]
卷期号:3 (2) 被引量:10
标识
DOI:10.1063/5.0082179
摘要

A fluent conversation with a virtual assistant, person-tailored news feeds, and deep-fake images created within seconds—all those things that have been unthinkable for a long time are now a part of our everyday lives. What these examples have in common is that they are realized by different means of machine learning (ML), a technology that has fundamentally changed many aspects of the modern world. The possibility to process enormous amount of data in multi-hierarchical, digital constructs has paved the way not only for creating intelligent systems but also for obtaining surprising new insight into many scientific problems. However, in the different areas of biosciences, which typically rely heavily on the collection of time-consuming experimental data, applying ML methods is a bit more challenging: Here, difficulties can arise from small datasets and the inherent, broad variability, and complexity associated with studying biological objects and phenomena. In this Review, we give an overview of commonly used ML algorithms (which are often referred to as “machines”) and learning strategies as well as their applications in different bio-disciplines such as molecular biology, drug development, biophysics, and biomaterials science. We highlight how selected research questions from those fields were successfully translated into machine readable formats, discuss typical problems that can arise in this context, and provide an overview of how to resolve those encountered difficulties.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YHF2发布了新的文献求助10
1秒前
3秒前
mmyhn发布了新的文献求助10
3秒前
mdmdd完成签到,获得积分10
6秒前
8秒前
小二郎应助盛夏之末采纳,获得10
12秒前
搜集达人应助江南达尔贝采纳,获得30
13秒前
13秒前
G1997完成签到 ,获得积分10
13秒前
李健的粉丝团团长应助YHF2采纳,获得30
15秒前
xavier完成签到 ,获得积分10
21秒前
zzx完成签到 ,获得积分10
23秒前
24秒前
tjnksy完成签到,获得积分10
27秒前
29秒前
29秒前
遗忘完成签到,获得积分10
32秒前
Alaska完成签到,获得积分10
33秒前
豆豆哥完成签到 ,获得积分10
34秒前
36秒前
37秒前
zzz完成签到 ,获得积分10
40秒前
JAYZHANG完成签到 ,获得积分10
40秒前
42秒前
47秒前
YHF2发布了新的文献求助30
47秒前
47秒前
脑洞疼应助科研兵采纳,获得10
48秒前
leeSongha完成签到 ,获得积分10
50秒前
发顶刊完成签到,获得积分10
51秒前
刘小源完成签到 ,获得积分10
54秒前
盛夏之末发布了新的文献求助10
54秒前
尉迟明风完成签到 ,获得积分10
58秒前
tejing1158完成签到 ,获得积分10
59秒前
YOG发布了新的文献求助10
1分钟前
Cc完成签到 ,获得积分10
1分钟前
YHF2发布了新的文献求助10
1分钟前
HEIKU应助科研通管家采纳,获得10
1分钟前
1分钟前
丘比特应助科研通管家采纳,获得10
1分钟前
高分求助中
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2500
Future Approaches to Electrochemical Sensing of Neurotransmitters 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
壮语核心名词的语言地图及解释 900
Digital predistortion of memory polynomial systems using direct and indirect learning architectures 500
Canon of Insolation and the Ice-age Problem 380
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 计算机科学 纳米技术 复合材料 化学工程 遗传学 基因 物理化学 催化作用 光电子学 量子力学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3916519
求助须知:如何正确求助?哪些是违规求助? 3462001
关于积分的说明 10920154
捐赠科研通 3189380
什么是DOI,文献DOI怎么找? 1762917
邀请新用户注册赠送积分活动 853194
科研通“疑难数据库(出版商)”最低求助积分说明 793722