Fetal phonocardiogram signals denoising using improved complete ensemble (EMD) with adaptive noise and optimal thresholding of wavelet coefficients

阈值 心音图 希尔伯特-黄变换 小波 降噪 噪音(视频) 模式识别(心理学) 人工智能 信号(编程语言) 计算机科学 离散小波变换 数学 算法 小波变换 语音识别 白噪声 统计 图像(数学) 程序设计语言
作者
Fethi Cheikh,Nasser Edinne Benhassine,Salim Sbaa
出处
期刊:Biomedizinische Technik [De Gruyter]
卷期号:67 (4): 237-247 被引量:6
标识
DOI:10.1515/bmt-2022-0006
摘要

Abstract Although fetal phonocardiogram (fPCG) signals have become a good indicator for discovered heart disease, they may be contaminated by various noises that reduce the signals quality and the final diagnosis decision. Moreover, the noise may cause the risk of the data to misunderstand the heart signal and to misinterpret it. The main objective of this paper is to effectively remove noise from the fPCG signal to make it clinically feasible. So, we proposed a novel noise reduction method based on Improved Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (ICEEMDAN), wavelet threshold and Crow Search Algorithm (CSA). This noise reduction method, named ICEEMDAN-DWT-CSA, has three major advantages. They were, (i) A better suppress of mode mixing and a minimized number of IMFs, (ii) A choice of wavelet corresponding to the study signal proven by the literature and (iii) Selection of the optimal threshold value. Firstly, the noisy fPCG signal is decomposed into Intrinsic Mode Functions (IMFs) by the (ICEEMDAN). Each noisy IMFs were decomposed by the Discrete Wavelet Transform (DWT). Then, the optimal threshold value using the (CSA) technique is selected and the thresholding function is carried out in the detail’s coefficients. Secondly, each denoised (IMFs) is reconstructed by applying the Inverse Discrete Wavelet Transform (IDWT). Finally, all these denoised (IMFs) are combined to get the denoised fPCG signal. The performance of the proposed method has been evaluated by Signal to Noise Ratio (SNR), Mean Square Error (MSE) and the Correlation Coefficient (COR). The experiment gave a better result than some standard methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lqqq完成签到 ,获得积分10
刚刚
bluesky发布了新的文献求助10
刚刚
嘻嘻嘻完成签到 ,获得积分10
1秒前
大家好车架号h完成签到,获得积分20
1秒前
万能图书馆应助foxbt采纳,获得10
1秒前
爱吃菠萝蜜完成签到,获得积分10
2秒前
GraceWu发布了新的文献求助10
2秒前
wwwsy发布了新的文献求助10
2秒前
4秒前
明理向真发布了新的文献求助30
4秒前
电闪发布了新的文献求助10
4秒前
闪shan发布了新的文献求助10
4秒前
5秒前
5秒前
和光同尘完成签到,获得积分10
5秒前
枫影完成签到,获得积分10
5秒前
wanci应助伶俐一曲采纳,获得10
6秒前
6秒前
白色风车完成签到,获得积分10
6秒前
6秒前
万能图书馆应助Anderson123采纳,获得10
7秒前
8秒前
Becky完成签到 ,获得积分10
8秒前
柔弱的不尤完成签到 ,获得积分10
8秒前
顾矜应助优美的背包采纳,获得10
8秒前
东哥发布了新的文献求助10
9秒前
科研通AI5应助aqiu采纳,获得10
9秒前
jy完成签到,获得积分10
9秒前
pirateharbor完成签到,获得积分10
9秒前
向向发布了新的文献求助10
10秒前
10秒前
Wrl发布了新的文献求助10
10秒前
11秒前
12秒前
HSF完成签到 ,获得积分10
12秒前
健忘捕完成签到 ,获得积分10
12秒前
panpan完成签到 ,获得积分10
12秒前
12秒前
靓丽的沁发布了新的文献求助20
13秒前
梅一一完成签到,获得积分10
14秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
材料概论 周达飞 ppt 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3808655
求助须知:如何正确求助?哪些是违规求助? 3353413
关于积分的说明 10365062
捐赠科研通 3069602
什么是DOI,文献DOI怎么找? 1685698
邀请新用户注册赠送积分活动 810656
科研通“疑难数据库(出版商)”最低求助积分说明 766240