Development of a novel combined nomogram model integrating deep learning-pathomics, radiomics and immunoscore to predict postoperative outcome of colorectal cancer lung metastasis patients

列线图 医学 无线电技术 肿瘤科 内科学 结直肠癌 肺癌 转移 接收机工作特性 放射科 癌症
作者
Renjie Wang,Weixing Dai,Jing Gong,Mingzhu Huang,Tingdan Hu,Hang Li,Kailin Lin,Cong Tan,Hong Hu,Tong Tong,Guoxiang Cai
出处
期刊:Journal of Hematology & Oncology [BioMed Central]
卷期号:15 (1) 被引量:152
标识
DOI:10.1186/s13045-022-01225-3
摘要

Abstract Limited previous studies focused on the death and progression risk stratification of colorectal cancer (CRC) lung metastasis patients. The aim of this study is to construct a nomogram model combing machine learning-pathomics, radiomics features, Immunoscore and clinical factors to predict the postoperative outcome of CRC patients with lung metastasis. In this study, a total of 103 CRC patients having metastases limited to lung and undergoing radical lung resection were identified. Patch-level convolutional neural network training in weakly supervised manner was used to perform whole slides histopathological images survival analysis. Synthetic minority oversampling technique and support vector machine classifier were used to identify radiomics features and build predictive signature. The Immunoscore for each patient was calculated from the density of CD3+ and CD8+ cells at the invasive margin and the center of metastatic tumor which were assessed on consecutive sections of automated digital pathology. Finally, pathomics and radiomics signatures were successfully developed to predict the overall survival (OS) and disease free survival (DFS) of patients. The predicted pathomics and radiomics scores are negatively correlated with Immunoscore and they are three independent prognostic factors for OS and DFS prediction. The combined nomogram showed outstanding performance in predicting OS (AUC = 0.860) and DFS (AUC = 0.875). The calibration curve and decision curve analysis demonstrated the considerable clinical usefulness of the combined nomogram. Taken together, the developed nomogram model consisting of machine learning-pathomics signature, radiomics signature, Immunoscore and clinical features could be reliable in predicting postoperative OS and DFS of colorectal lung metastasis patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hyd1640完成签到,获得积分10
1秒前
香蕉觅云应助keira采纳,获得10
3秒前
8秒前
8秒前
11秒前
13秒前
木兰签关注了科研通微信公众号
14秒前
cwy发布了新的文献求助10
14秒前
15秒前
15秒前
16秒前
29发布了新的文献求助10
18秒前
DrKe完成签到,获得积分10
18秒前
郭叠发布了新的文献求助10
19秒前
24秒前
25秒前
28秒前
123发布了新的文献求助10
29秒前
关天木发布了新的文献求助10
29秒前
29秒前
Lucky发布了新的文献求助10
33秒前
共享精神应助yyt采纳,获得10
36秒前
CodeCraft应助123采纳,获得10
39秒前
科研通AI2S应助lyayaru采纳,获得10
39秒前
39秒前
Persist6578完成签到 ,获得积分10
40秒前
41秒前
和和和完成签到 ,获得积分10
41秒前
赘婿应助郭叠采纳,获得10
42秒前
木兰签发布了新的文献求助10
44秒前
研友_LX7lK8完成签到 ,获得积分10
47秒前
48秒前
英姑应助Sephirex采纳,获得10
50秒前
鼻揩了转去应助hyx采纳,获得20
51秒前
阿菜完成签到,获得积分10
52秒前
铁甲小宝1发布了新的文献求助10
52秒前
Jasper应助热心的苡采纳,获得10
55秒前
59秒前
1分钟前
11发布了新的文献求助20
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778966
求助须知:如何正确求助?哪些是违规求助? 3324631
关于积分的说明 10218995
捐赠科研通 3039588
什么是DOI,文献DOI怎么找? 1668356
邀请新用户注册赠送积分活动 798646
科研通“疑难数据库(出版商)”最低求助积分说明 758440