已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Deep Reinforcement Learning-Based Multichannel Access for Industrial Wireless Networks With Dynamic Multiuser Priority

强化学习 计算机科学 马尔可夫决策过程 无线 无线网络 趋同(经济学) 马尔可夫过程 分布式计算 机器学习 电信 数学 经济增长 统计 经济
作者
Xiaoyu Liu,Chi Xu,Haibin Yu,Peng Zeng
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:18 (10): 7048-7058 被引量:21
标识
DOI:10.1109/tii.2021.3139349
摘要

In Industry 4.0, massive heterogeneous industrial devices generate a great deal of data with different quality of service requirements, and communicate via industrial wireless networks (IWNs). However, the limited time-frequency resources of IWNs cannot well support the high concurrent access of massive industrial devices with strict real-time and reliable communication requirements. To address this problem, a deep reinforcement learning-based dynamic priority multichannel access (DRL-DPMCA) algorithm is proposed in this article. Firstly, according to the time-sensitivity of industrial data, industrial devices are assigned with different priorities, based on which their channel access probabilities are dynamically adjusted. Then, the Markov decision process is utilized to model the dynamic priority multichannel access problem. To cope with the explosion of state space caused by the multichannel access of massive industrial devices with dynamic priorities, DRL is used to establish the mapping from states to actions. Next, the long-term cumulative reward is maximized to obtain an effective policy. Especially, with joint consideration of the access reward and priority reward, a compound reward for multichannel access and dynamic priority is designed. For breaking the time correlation of training data while accelerating the convergence of DRL-DPMCA, an experience replay with experience-weight is proposed to store and sample experiences categorically. Besides, the gated recurrent unit, dueling architecture and step-by-step $\varepsilon$ -greedy method are employed to make states more comprehensive and reduce model oscillation. Extensive experiments show that, compared with slotted-Aloha and deep Q network algorithms, DRL-DPMCA converges quickly, and guarantees the highest channel access probability and the minimum queuing delay for high-priority industrial devices in the context of minimum access conflict and nearly 100% channel utilization.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
汉堡包应助天真白天采纳,获得10
1秒前
MOOTEA发布了新的文献求助20
3秒前
iii发布了新的文献求助10
6秒前
Wsyyy完成签到 ,获得积分10
6秒前
朱先生发布了新的文献求助10
7秒前
洋洋完成签到,获得积分20
8秒前
8秒前
11秒前
云烟发布了新的文献求助20
12秒前
CipherSage应助二愣子采纳,获得10
14秒前
14秒前
罗里发布了新的文献求助10
14秒前
过时的朝雪完成签到 ,获得积分10
17秒前
CipherSage应助lyon采纳,获得10
17秒前
17秒前
Summer发布了新的文献求助10
20秒前
张达完成签到 ,获得积分10
20秒前
27秒前
迷路以蓝完成签到,获得积分10
28秒前
二愣子完成签到,获得积分10
28秒前
摇滚谬中庸完成签到 ,获得积分10
30秒前
31秒前
帅气凝云发布了新的文献求助10
31秒前
31秒前
传奇3应助CNNC采纳,获得10
32秒前
无语的电源完成签到,获得积分10
32秒前
33秒前
哈哈哈发布了新的文献求助10
33秒前
喜悦完成签到,获得积分10
34秒前
嘟嘟嘟嘟完成签到,获得积分10
34秒前
34秒前
35秒前
Jro发布了新的文献求助10
36秒前
36秒前
离个大谱发布了新的文献求助10
36秒前
cwy发布了新的文献求助10
37秒前
37秒前
herococa应助无语的电源采纳,获得10
37秒前
哭泣剑封发布了新的文献求助10
37秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
War and Peace in the Borderlands of Myanmar: The Kachin Ceasefire, 1994-2011 800
Robot-supported joining of reinforcement textiles with one-sided sewing heads 740
2024-2030年中国石英材料行业市场竞争现状及未来趋势研判报告 500
镇江南郊八公洞林区鸟类生态位研究 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4142050
求助须知:如何正确求助?哪些是违规求助? 3678304
关于积分的说明 11626887
捐赠科研通 3372012
什么是DOI,文献DOI怎么找? 1852255
邀请新用户注册赠送积分活动 915093
科研通“疑难数据库(出版商)”最低求助积分说明 829628