Transcriptomic analysis of formic acid stress response in Saccharomyces cerevisiae

甲酸 生物化学 酿酒酵母 转录组 生物 化学 细胞生物学 酵母 基因 基因表达
作者
Zeng LingJie,Jinxiang Huang,Pixue Feng,Xuemei Zhao,Zaiyong Si,Xiufeng Long,Qianwei Cheng,Yi Yi
出处
期刊:World Journal of Microbiology & Biotechnology [Springer Nature]
卷期号:38 (2) 被引量:16
标识
DOI:10.1007/s11274-021-03222-z
摘要

Formic acid is a representative small molecule acid in lignocellulosic hydrolysate that can inhibit the growth of Saccharomyces cerevisiae cells during alcohol fermentation. However, the mechanism of formic acid cytotoxicity remains largely unknown. In this study, RNA-Seq technology was used to study the response of S. cerevisiae to formic acid stress at the transcriptional level. Scanning electron microscopy and Fourier transform infrared spectroscopy were conducted to observe the surface morphology of yeast cells. A total of 1504 genes were identified as being differentially expressed, with 797 upregulated and 707 downregulated genes. Transcriptomic analysis showed that most genes related to glycolysis, glycogen synthesis, protein degradation, the cell cycle, the MAPK signaling pathway, and redox regulation were significantly induced under formic acid stress and were involved in protein translation and synthesis amino acid synthesis genes were significantly suppressed. Formic acid stress can induce oxidative stress, inhibit protein biosynthesis, cause cells to undergo autophagy, and activate the intracellular metabolic pathways of energy production. The increase of glycogen and the decrease of energy consumption metabolism may be important in the adaptation of S. cerevisiae to formic acid. In addition, formic acid can also induce sexual reproduction and spore formation. This study through transcriptome analysis has preliminarily reveal the molecular response mechanism of S. cerevisiae to formic acid stress and has provided a basis for further research on methods used to improve the tolerance to cell inhibitors in lignocellulose hydrolysate.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
苏苏完成签到,获得积分10
刚刚
1秒前
wanci应助剥橘子高手采纳,获得30
1秒前
3秒前
韧迹发布了新的文献求助10
4秒前
禾禾发布了新的文献求助10
5秒前
复杂函完成签到,获得积分10
10秒前
2799完成签到,获得积分10
15秒前
王茹梦发布了新的文献求助10
16秒前
禾禾完成签到,获得积分20
16秒前
姬如雪儿完成签到 ,获得积分10
16秒前
可乐完成签到,获得积分10
17秒前
21秒前
25秒前
27秒前
29秒前
啦啦啦发布了新的文献求助10
30秒前
CodeCraft应助禾禾采纳,获得10
33秒前
Zzy完成签到 ,获得积分10
35秒前
39秒前
yumi关注了科研通微信公众号
41秒前
44秒前
ding应助科研通管家采纳,获得10
46秒前
46秒前
SciGPT应助科研通管家采纳,获得10
46秒前
46秒前
yufanhui应助科研通管家采纳,获得30
46秒前
小蘑菇应助科研通管家采纳,获得10
46秒前
小准应助科研通管家采纳,获得10
46秒前
Maestro_S应助科研通管家采纳,获得10
46秒前
Maestro_S应助科研通管家采纳,获得10
46秒前
Maestro_S应助科研通管家采纳,获得10
46秒前
46秒前
46秒前
洁净豌豆完成签到,获得积分20
47秒前
49秒前
李爱国应助tianzhanggong采纳,获得10
50秒前
慕青应助wang5945采纳,获得10
50秒前
啦啦啦完成签到 ,获得积分10
53秒前
53秒前
高分求助中
请在求助之前详细阅读求助说明!!!! 20000
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 1000
The Three Stars Each: The Astrolabes and Related Texts 900
Yuwu Song, Biographical Dictionary of the People's Republic of China 700
[Lambert-Eaton syndrome without calcium channel autoantibodies] 520
Pressing the Fight: Print, Propaganda, and the Cold War 500
Bernd Ziesemer - Maos deutscher Topagent: Wie China die Bundesrepublik eroberte 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2471257
求助须知:如何正确求助?哪些是违规求助? 2137961
关于积分的说明 5447789
捐赠科研通 1861848
什么是DOI,文献DOI怎么找? 925987
版权声明 562740
科研通“疑难数据库(出版商)”最低求助积分说明 495302