A Challenge for Emphysema Quantification Using a Deep Learning Algorithm With Low-dose Chest Computed Tomography

医学 置信区间 组内相关 算法 计算机断层摄影术 核医学 放射科 人工智能 数学 内科学 计算机科学 临床心理学 心理测量学
作者
Hyewon Choi,Hyungjin Kim,Kwang Nam Jin,Yeon Joo Jeong,Kum Ju Chae,Kyung Hee Lee,Hwan Seok Yong,Bo Mi Gil,Hye‐Jeong Lee,Ki Yeol Lee,Kyung Nyeo Jeon,Jaeyoun Yi,Sola Seo,Chulkyun Ahn,Joonhyung Lee,Kyuhyup Oh,Jin Mo Goo
出处
期刊:Journal of Thoracic Imaging [Lippincott Williams & Wilkins]
卷期号:37 (4): 253-261 被引量:8
标识
DOI:10.1097/rti.0000000000000647
摘要

We aimed to identify clinically relevant deep learning algorithms for emphysema quantification using low-dose chest computed tomography (LDCT) through an invitation-based competition.The Korean Society of Imaging Informatics in Medicine (KSIIM) organized a challenge for emphysema quantification between November 24, 2020 and January 26, 2021. Seven invited research teams participated in this challenge. In total, 558 pairs of computed tomography (CT) scans (468 pairs for the training set, and 90 pairs for the test set) from 9 hospitals were collected retrospectively or prospectively. CT acquisition followed the hospitals' protocols to reflect the real-world clinical setting. Using the training set, each team developed an algorithm that generated converted LDCT by changing the pixel values of LDCT to simulate those of standard-dose CT (SDCT). The agreement between SDCT and LDCT was evaluated using the intraclass correlation coefficient (ICC; 2-way random effects, absolute agreement, and single rater) for the percentage of low-attenuated area below -950 HU (LAA-950 HU), κ value for emphysema categorization (LAA-950 HU, <5%, 5% to 10%, and ≥10%) and cosine similarity of LAA-950 HU.The mean LAA-950 HU of the test set was 14.2%±10.5% for SDCT, 25.4%±10.2% for unconverted LDCT, and 12.9%±10.4%, 11.7%±10.8%, and 12.4%±10.5% for converted LDCT (top 3 teams). The agreement between the SDCT and converted LDCT of the first-place team was 0.94 (95% confidence interval: 0.90, 0.97) for ICC, 0.71 (95% confidence interval: 0.58, 0.84) for categorical agreement, and 0.97 (interquartile range: 0.94 to 0.99) for cosine similarity.Emphysema quantification with LDCT was feasible through deep learning-based CT conversion strategies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
MublackChuan发布了新的文献求助30
刚刚
科研通AI5应助ningning采纳,获得10
刚刚
hl发布了新的文献求助30
刚刚
刚刚
搜集达人应助Zzoe_S采纳,获得10
刚刚
小鲨鱼完成签到,获得积分10
刚刚
1秒前
陈陈完成签到,获得积分10
1秒前
wenhujiu完成签到,获得积分10
2秒前
Molly完成签到,获得积分10
2秒前
3秒前
chengche完成签到,获得积分10
3秒前
JMao发布了新的文献求助10
3秒前
dilili发布了新的文献求助10
3秒前
4秒前
pp63完成签到,获得积分10
4秒前
vousme完成签到 ,获得积分10
4秒前
4秒前
完美世界应助leaf采纳,获得10
5秒前
5秒前
aceman发布了新的文献求助10
5秒前
小小苏荷完成签到,获得积分10
5秒前
Johnny完成签到,获得积分10
6秒前
糖糖猫发布了新的文献求助10
7秒前
脑洞疼应助MublackChuan采纳,获得30
7秒前
脑洞疼应助喜悦蚂蚁采纳,获得10
7秒前
8秒前
8秒前
8秒前
chengche发布了新的文献求助10
8秒前
8秒前
9秒前
七言山川发布了新的文献求助10
9秒前
9秒前
年轻的吐司完成签到,获得积分10
10秒前
甄凤元完成签到,获得积分10
10秒前
司空元正完成签到 ,获得积分10
11秒前
yuancw完成签到 ,获得积分10
11秒前
Weiweiweixiao完成签到,获得积分10
11秒前
11秒前
高分求助中
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Pathology of Laboratory Rodents and Rabbits (5th Edition) 400
Knowledge management in the fashion industry 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3816404
求助须知:如何正确求助?哪些是违规求助? 3359885
关于积分的说明 10405540
捐赠科研通 3077920
什么是DOI,文献DOI怎么找? 1690402
邀请新用户注册赠送积分活动 813770
科研通“疑难数据库(出版商)”最低求助积分说明 767845