化学
磁化率
正交晶系
电阻率和电导率
化学计量学
氧气
无机化学
分析化学(期刊)
顺磁性
二价
金属
结晶学
晶体结构
物理化学
物理
工程类
电气工程
有机化学
量子力学
色谱法
作者
Zehui Zhang,M. Greenblatt
标识
DOI:10.1006/jssc.1994.1209
摘要
The synthesis, structure, and physical properties of La3-xMxNi2O7-δ, with M = Ca2+, Sr2+, or Ba2+, and 0 < x ≤ 0.075, were investigated. These compounds were prepared by a precursor method with tetramethyl ammonium hydroxide and were characterized by room temperature and high-temperature powder X-ray diffraction, TGA, electrical resistivity, and magnetic susceptibility measurements. The substituted compounds form with orthorhombic symmetry in space group Fmmm, similar to the as-prepared parent compound, La3Ni2O6.92. As the amount of divalent alkaline earth metal substitution increases, the c cell parameter does not significantly change for Ca and increases significantly for Sr and Ba substitution, while the a and b cell parameters remain nearly unchanged for all cases. The observed trend in the c parameter is due to the increasing Ni3+ ion concentration for the case of Ca2+ substitution, while for Sr2+ and Ba2+ substitutions the effective larger size of the divalent cations is dominant. Significant oxygen deficiencies are noted in all of the as-prepared samples. However, upon high-pressure oxygen annealing, stoichiometric oxygen contents can be achieved. The room temperature resistivity of the as-prepared substituted compounds decreases relative to La3Ni2O6.92, and at x = 0.075 a semiconductor to metal transition is observed for all M. The high-pressure oxygen annealed samples for all compositions show metallic behavior from room temperature down to 20 K. The magnetic susceptibility is nearly temperature independent in the temperature range 100-300 K, and paramagnetic behavior is observed below 100 K.
科研通智能强力驱动
Strongly Powered by AbleSci AI