Diagnosis approach of chronic lymphocytic leukemia on unstained blood smears using Raman microspectroscopy and supervised classification

慢性淋巴细胞白血病 拉曼光谱 血涂片 核酸 病理 吉姆萨染色 化学 白血病 免疫学 医学 光学 生物化学 物理 疟疾
作者
Teddy Happillon,Valérie Untereiner,Abdelilah Beljebbar,Cyril Gobinet,Sylvie Daliphard,Pascale Cornillet‐Lefèbvre,Anne Quinquenel,Alain Delmer,Xavier Troussard,Jacques Klossa,Michel Manfait
出处
期刊:Analyst [The Royal Society of Chemistry]
卷期号:140 (13): 4465-4472 被引量:20
标识
DOI:10.1039/c4an02085e
摘要

We have investigated the potential of Raman microspectroscopy combined with supervised classification algorithms to diagnose a blood lymphoproliferative disease, namely chronic lymphocytic leukemia (CLL). This study was conducted directly on human blood smears (27 volunteers and 49 CLL patients) spread on standard glass slides according to a cytological protocol before the staining step. Visible excitation at 532 nm was chosen, instead of near infrared, in order to minimize the glass contribution in the Raman spectra. After Raman measurements, blood smears were stained using the May-Grünwald Giemsa procedure to correlate spectroscopic data classifications with cytological analysis. A first prediction model was built using support vector machines to discriminate between the two main leukocyte subpopulations (lymphocytes and polymorphonuclears) with sensitivity and specificity over 98.5%. The spectral differences between these two classes were associated to higher nucleic acid content in lymphocytes compared to polymorphonuclears. Then, we developed a classification model to discriminate between neoplastic and healthy lymphocyte spectra, with a mean sensitivity and specificity of 88% and 91% respectively. The main molecular differences between healthy and CLL cells were associated with DNA and protein changes. These spectroscopic markers could lead, in the future, to the development of a helpful medical tool for CLL diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大白天的飙摩的完成签到,获得积分10
刚刚
沉静的万天完成签到 ,获得积分10
刚刚
workwork完成签到,获得积分10
刚刚
GOODYUE完成签到,获得积分20
刚刚
轻松笙完成签到,获得积分10
1秒前
zhang完成签到,获得积分10
1秒前
aaa完成签到,获得积分10
2秒前
2秒前
2秒前
2秒前
顺顺发布了新的文献求助20
3秒前
3秒前
黎黎完成签到,获得积分10
3秒前
3秒前
camellia发布了新的文献求助10
3秒前
4秒前
4秒前
筱玉完成签到,获得积分10
4秒前
李文博发布了新的文献求助10
4秒前
斯文静曼发布了新的文献求助10
4秒前
jiaolulu完成签到,获得积分10
4秒前
优秀的枫完成签到,获得积分20
4秒前
4秒前
美嘉美完成签到,获得积分10
4秒前
5秒前
炙热芝完成签到,获得积分10
6秒前
嘒彼小星完成签到 ,获得积分10
6秒前
6秒前
哭泣的翠丝完成签到,获得积分10
7秒前
7秒前
jennyyu完成签到,获得积分10
7秒前
terence完成签到,获得积分10
7秒前
8秒前
8秒前
HopeStar发布了新的文献求助10
8秒前
马保国123发布了新的文献求助10
8秒前
Hello应助蓝莓松饼采纳,获得10
9秒前
9秒前
优秀的枫发布了新的文献求助10
9秒前
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759