Diagnosis approach of chronic lymphocytic leukemia on unstained blood smears using Raman microspectroscopy and supervised classification

慢性淋巴细胞白血病 拉曼光谱 血涂片 核酸 病理 吉姆萨染色 化学 白血病 免疫学 医学 光学 生物化学 物理 疟疾
作者
Teddy Happillon,Valérie Untereiner,Abdelilah Beljebbar,Cyril Gobinet,Sylvie Daliphard,Pascale Cornillet‐Lefèbvre,Anne Quinquenel,Alain Delmer,Xavier Troussard,Jacques Klossa,Michel Manfait
出处
期刊:Analyst [Royal Society of Chemistry]
卷期号:140 (13): 4465-4472 被引量:20
标识
DOI:10.1039/c4an02085e
摘要

We have investigated the potential of Raman microspectroscopy combined with supervised classification algorithms to diagnose a blood lymphoproliferative disease, namely chronic lymphocytic leukemia (CLL). This study was conducted directly on human blood smears (27 volunteers and 49 CLL patients) spread on standard glass slides according to a cytological protocol before the staining step. Visible excitation at 532 nm was chosen, instead of near infrared, in order to minimize the glass contribution in the Raman spectra. After Raman measurements, blood smears were stained using the May-Grünwald Giemsa procedure to correlate spectroscopic data classifications with cytological analysis. A first prediction model was built using support vector machines to discriminate between the two main leukocyte subpopulations (lymphocytes and polymorphonuclears) with sensitivity and specificity over 98.5%. The spectral differences between these two classes were associated to higher nucleic acid content in lymphocytes compared to polymorphonuclears. Then, we developed a classification model to discriminate between neoplastic and healthy lymphocyte spectra, with a mean sensitivity and specificity of 88% and 91% respectively. The main molecular differences between healthy and CLL cells were associated with DNA and protein changes. These spectroscopic markers could lead, in the future, to the development of a helpful medical tool for CLL diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jaikaran完成签到,获得积分10
5秒前
5秒前
syx发布了新的文献求助10
6秒前
6秒前
Demon完成签到,获得积分20
6秒前
7秒前
一氧化二氢完成签到,获得积分10
11秒前
脑洞疼应助欣喜的以丹采纳,获得10
11秒前
haprier发布了新的文献求助30
12秒前
Alan发布了新的文献求助10
14秒前
无语发布了新的文献求助10
17秒前
adds发布了新的文献求助10
17秒前
19秒前
舒心的天完成签到,获得积分10
20秒前
华仔应助zyj采纳,获得10
23秒前
24秒前
SYLH应助科研通管家采纳,获得10
24秒前
SYLH应助科研通管家采纳,获得10
24秒前
852应助科研通管家采纳,获得10
25秒前
SYLH应助科研通管家采纳,获得10
25秒前
在水一方应助科研通管家采纳,获得10
25秒前
小二郎应助科研通管家采纳,获得10
25秒前
斯文败类应助科研通管家采纳,获得10
25秒前
上官若男应助科研通管家采纳,获得10
25秒前
SYLH应助科研通管家采纳,获得10
25秒前
科目三应助科研通管家采纳,获得10
25秒前
SYLH应助科研通管家采纳,获得10
25秒前
SYLH应助科研通管家采纳,获得10
25秒前
SYLH应助科研通管家采纳,获得10
25秒前
解语花应助科研通管家采纳,获得30
26秒前
田様应助科研通管家采纳,获得10
26秒前
李健应助科研通管家采纳,获得10
26秒前
汉堡包应助科研通管家采纳,获得10
26秒前
爆米花应助科研通管家采纳,获得10
26秒前
小北应助科研通管家采纳,获得10
26秒前
SYLH应助科研通管家采纳,获得10
26秒前
26秒前
深情安青应助科研通管家采纳,获得10
26秒前
26秒前
丘比特应助科研通管家采纳,获得10
26秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3964773
求助须知:如何正确求助?哪些是违规求助? 3510218
关于积分的说明 11152404
捐赠科研通 3244487
什么是DOI,文献DOI怎么找? 1792405
邀请新用户注册赠送积分活动 873825
科研通“疑难数据库(出版商)”最低求助积分说明 803987