Amorphous Pharmaceutical Solids

无定形固体 生化工程 计算机科学 过冷 放松(心理学) 材料科学 多形性 纳米技术 工艺工程 化学 物理 有机化学 热力学 医学 工程类 内科学
作者
Marc Descamps
出处
期刊:Advanced Drug Delivery Reviews [Elsevier BV]
卷期号:100: 1-2 被引量:19
标识
DOI:10.1016/j.addr.2016.04.011
摘要

Alarming statistics showing the continuous increase in the number of drugs and drug candidates with insufficient water-solubility focus scientist's efforts on finding optimal strategy for their formulation. Among the current research trends aimed at improving the solubility of active pharmaceutical ingredients (APIs), amorphization gained notable attention. The replacement of a crystalline API with its amorphous counterpart provides a great opportunity to increase the drug's bioavailability, but at the same time raises stability-related problems as amorphous APIs, from preparation to administration, are inherently driven toward crystallization. The analysis of relaxation processes in glassy and supercooled liquid states of amorphous API with molecular dynamics distributed over many decades in frequency, becomes a powerful tool for addressing many critical problems related to their successfully application. The aim of this article is to outline the contribution of molecular dynamics studies performed using broadband dielectric spectroscopy (BDS) to understanding the key properties of amorphous drugs. Since the problem of stability assessment is the most relevant, most of the article will focus on it. The following questions will be addressed: Can we predict the stability of a drug in a glassy state by measuring its dynamics in a supercooled liquid state? Can we determine the effectiveness of the stabilizer on the basis of relaxation studies? Can we accelerate somehow the stability assessment process? In addition, we will address the problem of tautomerization of amorphous APIs showing how the time-dependent analysis of dielectric response can be utilized to discern the time scale of this phenomenon. We will also briefly discuss the impact of hydrogen bonds on the dynamics of amorphous APIs, which due to their remarkable property deserve closer examination.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小二郎应助封腾采纳,获得10
3秒前
3秒前
wangmengcheng完成签到,获得积分20
7秒前
思源应助冰糖葫芦娃采纳,获得10
9秒前
wangmengcheng发布了新的文献求助10
10秒前
科研通AI5应助迷路采纳,获得10
12秒前
16秒前
16秒前
科研通AI5应助lu周采纳,获得10
16秒前
长孙巧凡完成签到,获得积分0
19秒前
otaro发布了新的文献求助10
19秒前
翁雁丝完成签到 ,获得积分0
19秒前
云朵完成签到,获得积分10
20秒前
Singularity应助WSZXQ采纳,获得10
21秒前
22秒前
gzsy完成签到 ,获得积分10
26秒前
姜姜完成签到,获得积分10
26秒前
莫尔完成签到,获得积分20
27秒前
Leukocyte完成签到 ,获得积分10
28秒前
Glowing完成签到,获得积分10
30秒前
赘婿应助GongSyi采纳,获得10
30秒前
31秒前
31秒前
Danan完成签到 ,获得积分10
35秒前
田様应助秃头小宝贝采纳,获得10
36秒前
孤独的寒烟完成签到,获得积分10
36秒前
尺八发布了新的文献求助30
36秒前
36秒前
pjh发布了新的文献求助10
36秒前
单薄灵松完成签到 ,获得积分10
39秒前
摸鱼的研究僧完成签到,获得积分10
39秒前
40秒前
JamesPei应助WSZXQ采纳,获得10
41秒前
传奇3应助等待盼雁采纳,获得10
41秒前
隐形曼青应助pjh采纳,获得10
41秒前
orixero应助科研通管家采纳,获得10
41秒前
科研通AI2S应助科研通管家采纳,获得10
41秒前
大地应助科研通管家采纳,获得20
41秒前
科研助手6应助科研通管家采纳,获得10
41秒前
科研通AI5应助科研通管家采纳,获得10
42秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778011
求助须知:如何正确求助?哪些是违规求助? 3323655
关于积分的说明 10215320
捐赠科研通 3038839
什么是DOI,文献DOI怎么找? 1667661
邀请新用户注册赠送积分活动 798341
科研通“疑难数据库(出版商)”最低求助积分说明 758339