Interpretable and explainable predictive machine learning models for data-driven protein engineering

计算机科学 人工智能 机器学习
作者
David Medina-Ortiz,Ashkan Khalifeh,Hoda Anvari-Kazemabad,Mehdi D. Davari
出处
期刊:Biotechnology Advances [Elsevier BV]
卷期号:79: 108495-108495 被引量:1
标识
DOI:10.1016/j.biotechadv.2024.108495
摘要

Protein engineering through directed evolution and (semi)rational design has become a powerful approach for optimizing and enhancing proteins with desired properties. The integration of artificial intelligence methods has further accelerated protein engineering process by enabling the development of predictive models based on data-driven strategies. However, the lack of interpretability and transparency in these models limits their trustworthiness and applicability in real-world scenarios. Explainable Artificial Intelligence addresses these challenges by providing insights into the decision-making processes of machine learning models, enhancing their reliability and interpretability. Explainable strategies has been successfully applied in various biotechnology fields, including drug discovery, genomics, and medicine, yet its application in protein engineering remains underexplored. The incorporation of explainable strategies in protein engineering holds significant potential, as it can guide protein design by revealing how predictive models function, benefiting approaches such as machine learning-assisted directed evolution. This perspective work explores the principles and methodologies of explainable artificial intelligence, highlighting its relevance in biotechnology and its potential to enhance protein design. Additionally, three theoretical pipelines integrating predictive models with explainable strategies are proposed, focusing on their advantages, disadvantages, and technical requirements. Finally, the remaining challenges of explainable artificial intelligence in protein engineering and future directions for its development as a support tool for traditional protein engineering methodologies are discussed.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
冷静曲奇发布了新的文献求助30
1秒前
蜜HHH完成签到 ,获得积分10
1秒前
Yangaaa完成签到 ,获得积分10
1秒前
Aria_chao完成签到,获得积分10
2秒前
bystanding完成签到,获得积分10
2秒前
2秒前
3秒前
3秒前
3秒前
阳先森完成签到,获得积分10
3秒前
3秒前
Aman完成签到,获得积分10
4秒前
旺旺旺完成签到,获得积分10
4秒前
直率皓轩发布了新的文献求助10
4秒前
英姑应助yangyang111采纳,获得10
4秒前
4秒前
月满西楼ahh完成签到,获得积分10
4秒前
zh发布了新的文献求助10
5秒前
Akim应助Adler采纳,获得10
5秒前
5D完成签到,获得积分10
6秒前
6秒前
BY完成签到,获得积分10
6秒前
7秒前
piglet完成签到 ,获得积分10
7秒前
1234567发布了新的文献求助10
7秒前
cheng完成签到,获得积分10
7秒前
任慧晶发布了新的文献求助10
7秒前
刘刘刘完成签到,获得积分20
8秒前
8秒前
量子星尘发布了新的文献求助10
9秒前
9秒前
Yu完成签到,获得积分10
9秒前
10秒前
Mok完成签到,获得积分10
10秒前
10秒前
酸奶suannai发布了新的文献求助10
10秒前
5D发布了新的文献求助10
10秒前
StrawCc完成签到 ,获得积分10
10秒前
10秒前
小马甲应助leitao采纳,获得30
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
二维材料在应力作用下的力学行为和层间耦合特性研究 600
苯丙氨酸解氨酶的祖先序列重建及其催化性能 500
Schifanoia : notizie dell'istituto di studi rinascimentali di Ferrara : 66/67, 1/2, 2024 470
Laboratory Animal Technician TRAINING MANUAL WORKBOOK 2012 edtion 400
Progress and Regression 400
A review of Order Plesiosauria, and the description of a new, opalised pliosauroid, Leptocleidus demoscyllus, from the early cretaceous of Coober Pedy, South Australia 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4835727
求助须知:如何正确求助?哪些是违规求助? 4139374
关于积分的说明 12813452
捐赠科研通 3883649
什么是DOI,文献DOI怎么找? 2135565
邀请新用户注册赠送积分活动 1155606
关于科研通互助平台的介绍 1055038