亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Enhancing thyroid nodule assessment with deep learning and ultrasound imaging

甲状腺 结核(地质) 超声波 超声成像 医学 甲状腺结节 放射科 医学物理学 内科学 生物 古生物学
作者
Jatinder Kumar,Surya Narayan Panda,Devi Dayal,Manish Sharma
出处
期刊:e-Prime [Elsevier]
卷期号:11: 100894-100894 被引量:1
标识
DOI:10.1016/j.prime.2025.100894
摘要

The thyroid is a tiny, butterfly-shaped gland in the neck which produces hormones that are essential for controlling the body's various metabolic processes. Thyroid nodules, which are abnormal growths or lumps in the thyroid gland, are common thyroid illnesses, as are hypothyroidism, hyperthyroidism, and both. Thyroid issues are most commonly identified and categorised using thyroid ultrasonography (USG) images. They can have a range of effects on the body's metabolism and overall health. Developments in artificial intelligence (AI), particularly deep learning (DL), are helping to identify and measure patterns in clinical images because of DL's capacity towards pull out hierarchical attribute representations from images without the need for annotated images. Minimizing unnecessary fine needle aspiration (FNA) requires the essential identification of as many malignant thyroid nodules as possible, distinguishing them from benign ones. This research work introduces a technique for thyroid nodule identification in USGs, employing DL to extract relevant features. Three pre-trained DL models, namely ResNet-18, VGG-19 and AlexNet were fine-tuned before using for classification of thyroid USG images. The models' testing and training were done with Digital Database of Thyroid Ultrasound Images (DDTI) which is gold standard dataset. The results demonstrate a classification accuracy of 97.13%, 90.31% and 83.59% with ResNet-18, VGG-19 and AlexNet, respectively. The experimental findings affirm that the pre-trained network model ResNet-18 achieves superior classification performance compared to VGG-19 and AlexNet.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
fishss完成签到 ,获得积分0
19秒前
浮游应助科研通管家采纳,获得10
21秒前
浮游应助科研通管家采纳,获得10
21秒前
浮游应助科研通管家采纳,获得10
21秒前
田様应助科研通管家采纳,获得10
21秒前
我是老大应助科研通管家采纳,获得10
22秒前
浮游应助科研通管家采纳,获得10
22秒前
23秒前
scl发布了新的文献求助10
28秒前
35秒前
滕皓轩完成签到 ,获得积分20
1分钟前
1分钟前
浮游应助科研通管家采纳,获得10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
后山种仙草完成签到,获得积分10
2分钟前
Ccccn完成签到,获得积分10
2分钟前
2分钟前
3分钟前
王欣瑶完成签到 ,获得积分10
3分钟前
浮游应助科研通管家采纳,获得10
4分钟前
bkagyin应助科研通管家采纳,获得10
4分钟前
浮游应助科研通管家采纳,获得10
4分钟前
浮游应助科研通管家采纳,获得10
4分钟前
浮游应助科研通管家采纳,获得10
4分钟前
浮游应助科研通管家采纳,获得10
4分钟前
4分钟前
4分钟前
敏敏9813发布了新的文献求助10
4分钟前
merrylake完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
sleep应助不得明月采纳,获得10
5分钟前
万能图书馆应助Yyyyyyyyy采纳,获得10
5分钟前
浮游应助科研通管家采纳,获得10
6分钟前
浮游应助科研通管家采纳,获得10
6分钟前
浮游应助科研通管家采纳,获得10
6分钟前
ZYP应助科研通管家采纳,获得10
6分钟前
高分求助中
Learning and Memory: A Comprehensive Reference 2000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Binary Alloy Phase Diagrams, 2nd Edition 600
Expectations: Teaching Writing from the Reader's Perspective 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5503049
求助须知:如何正确求助?哪些是违规求助? 4598661
关于积分的说明 14464728
捐赠科研通 4532336
什么是DOI,文献DOI怎么找? 2483899
邀请新用户注册赠送积分活动 1467118
关于科研通互助平台的介绍 1439851