清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Adaptive stratified mixture importance sampling for efficiently estimating extremely small failure probability with high-dimensional inputs and multiple failure domains

分层抽样 采样(信号处理) 统计 数学 计算机科学 计算机视觉 滤波器(信号处理)
作者
Yuhua Yan,Zhenzhou Lü
出处
期刊:Multidiscipline Modeling in Materials and Structures [Brill]
标识
DOI:10.1108/mmms-01-2025-0015
摘要

Purpose This study aims to efficiently estimate the extremely small failure probability with high-dimensional inputs and multiple failure domains. Design/methodology/approach This paper proposed an adaptive stratified mixture importance sampling method. The proposed method first constructs an explicit and regular mixture importance sampling probability density function (M-IS-PDF) by taking the clustering centroids as the density centers. Then by the constructed M-IS-PDF, the proposed method explores the rare multiple failure domains by adaptively stratifying, thereby addressing the issue of estimating extremely small failure probability robustly and efficiently. Findings Compared with the existing cross-entropy based IS method, the constructed M-IS-PDF not only covers the domains significantly contributing to the failure probability through clustering centroids to reduce the variance of failure probability estimation, but also has no undetermined parameter set to optimize, enhancing the adaptability in high-dimensional problems. Compared with the subset simulation method, the adaptive stratified M-IS-PDF constructed is explicit, regular and easy sampling. It not only has high sampling efficiency but also avoids estimating conditional failure probabilities layer by layer, improving the algorithmic robustness for estimating extremely small failure probability. Originality/value Both numerical and engineering examples indicate that, under the similar failure probability estimation accuracy, the proposed method requires significantly smaller sample size and lower computational cost than subset simulation and cross-entropy based IS methods, demonstrating higher efficiency and robustness in addressing intractable reliability analysis problems with high-dimensional inputs, multiple failure domains and rare failure.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
Muran完成签到,获得积分0
10秒前
wuju完成签到,获得积分10
14秒前
MMMMM应助科研通管家采纳,获得30
18秒前
MMMMM应助科研通管家采纳,获得20
18秒前
31秒前
量子星尘发布了新的文献求助10
33秒前
1分钟前
柯伊达完成签到 ,获得积分10
1分钟前
超级热女士完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助30
1分钟前
科研通AI6应助萌大叔采纳,获得200
1分钟前
2分钟前
2分钟前
gexzygg应助科研通管家采纳,获得10
2分钟前
深情安青应助科研通管家采纳,获得30
2分钟前
大医仁心完成签到 ,获得积分10
2分钟前
量子星尘发布了新的文献求助10
3分钟前
4分钟前
HY完成签到 ,获得积分10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
gexzygg应助科研通管家采纳,获得10
4分钟前
随心所欲完成签到 ,获得积分10
5分钟前
5分钟前
5分钟前
量子星尘发布了新的文献求助10
5分钟前
壮观问寒发布了新的文献求助10
5分钟前
壮观问寒完成签到,获得积分10
6分钟前
6分钟前
gexzygg应助科研通管家采纳,获得10
6分钟前
gexzygg应助科研通管家采纳,获得10
6分钟前
小智发布了新的文献求助10
6分钟前
量子星尘发布了新的文献求助10
7分钟前
Hu完成签到,获得积分20
7分钟前
crazy完成签到,获得积分10
7分钟前
激动的似狮完成签到,获得积分10
8分钟前
lilaccalla完成签到 ,获得积分10
8分钟前
习月阳完成签到,获得积分10
8分钟前
莽兽鳞上最黑的皮完成签到,获得积分10
8分钟前
量子星尘发布了新的文献求助10
8分钟前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Organic Chemistry 1500
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
塔里木盆地肖尔布拉克组微生物岩沉积层序与储层成因 500
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
Introducing Sociology Using the Stuff of Everyday Life 400
Conjugated Polymers: Synthesis & Design 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4270375
求助须知:如何正确求助?哪些是违规求助? 3800854
关于积分的说明 11910965
捐赠科研通 3447688
什么是DOI,文献DOI怎么找? 1891031
邀请新用户注册赠送积分活动 941779
科研通“疑难数据库(出版商)”最低求助积分说明 845885