Magnetic CoNi@N-Doped Carbon Composite for CO2 Electrochemical Reduction to CH4 Associated with Methanol Oxidation to Methylal in an Ionic Liquid Electrolyte

电解质 电化学 离子液体 甲醇 材料科学 兴奋剂 复合数 碳纤维 无机化学 化学工程 电极 化学 物理化学 光电子学 有机化学 复合材料 催化作用 工程类
作者
Hongyan Li,Bairui Yang,Hui Kong,Jingxiang Zhao,Qinghai Cai
出处
期刊:Industrial & Engineering Chemistry Research [American Chemical Society]
标识
DOI:10.1021/acs.iecr.4c02973
摘要

The electrochemical reduction reaction of CO2 (CO2eRR) to high value-added chemicals in an aqueous electrolyte usually faces challenges, including sluggish oxygen evolution at the anode and the competing reaction of hydrogen evolution at the cathode. A novel CoNi@NC composite with high saturation magnetization, prepared by facile pyrolysis, was used as the cathode and a Pt sheet as the anode in an ionic liquid (IL)-methanol electrolyte to conduct the CO2eRR to produce CH4 and CO, and oxidation of methanol to generate methylal (dimethoxymethane, DMM). A magnetic CoNi alloy nanomaterial (CoNi@NC) with a nitrogen-doped carbon layer-coated structure was synthesized by a one-pot method. The system achieved an associative strategy for synchronous production of high-valued chemicals via two half-reactions at the cathode and anode, respectively. The optimal CoNi@NC composite exhibited efficient catalytic activity, obtaining an average of 54.5% faradaic efficiency (FE) for DMM within 48 h and 91.9% of momentary FE for CO and CH4 at 24 h under lower energy consumption. The electrode catalyst and ionic liquid electrolyte also exhibited good recyclability and stability in the CO2eRR. Mechanism studies indicated that magnetic CoNi alloy species served as adsorption and active sites for CO2 conversion. In addition, the carbon layer coating enhanced the stability of the CoNi alloy, and N-doping introduced surface defects on the carbon layer, thereby promoting CO2 adsorption and electrocatalytic activity. Density functional theory (DFT) calculations demonstrated that the magnetic CoNi (1 1 1) species was conducive to CO2 adsorption and activation, exhibiting high selectivity for the CO2eRR.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
hou发布了新的文献求助10
1秒前
李健应助无心采纳,获得10
2秒前
CKX完成签到,获得积分20
3秒前
李爱国应助yszm采纳,获得10
4秒前
6秒前
孙聖雯发布了新的文献求助10
6秒前
不成文发布了新的文献求助10
7秒前
7秒前
8秒前
9秒前
9秒前
10秒前
11秒前
dreamboat完成签到,获得积分20
11秒前
我的miemie发布了新的文献求助10
12秒前
春桑早点睡完成签到,获得积分10
12秒前
12秒前
隐形曼青应助王木木采纳,获得10
13秒前
翔君发布了新的文献求助10
14秒前
14秒前
15秒前
15秒前
1111123发布了新的文献求助10
16秒前
16秒前
sjbai发布了新的文献求助10
16秒前
流云完成签到,获得积分10
18秒前
19秒前
我的miemie完成签到,获得积分10
19秒前
19秒前
Ava应助云不归采纳,获得10
19秒前
20秒前
yszm发布了新的文献求助10
20秒前
Perrylin718发布了新的文献求助10
20秒前
20秒前
21秒前
科研通AI5应助1111123采纳,获得10
21秒前
鹿lu发布了新的文献求助10
22秒前
拼搏草莓发布了新的文献求助10
22秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Artificial Intelligence driven Materials Design 600
Comparing natural with chemical additive production 500
Machine Learning in Chemistry 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5194434
求助须知:如何正确求助?哪些是违规求助? 4376734
关于积分的说明 13629959
捐赠科研通 4231723
什么是DOI,文献DOI怎么找? 2321224
邀请新用户注册赠送积分活动 1319361
关于科研通互助平台的介绍 1269731