MD-GCCF: Multi-view deep graph contrastive learning for collaborative filtering

计算机科学 人工智能 图形 协同过滤 深度学习 机器学习 理论计算机科学 推荐系统
作者
Xinlu Li,Y. Tian,Bingbing Dong,Shengwei Ji
出处
期刊:Neurocomputing [Elsevier BV]
卷期号:590: 127756-127756 被引量:1
标识
DOI:10.1016/j.neucom.2024.127756
摘要

Collaborative Filtering (CF), a classical recommender system approach, learns users' interests and behavioral preferences for items through a user-item interaction graph. CF based on graph neural network (GNN) and CF based on graph contrastive learning (GCL) show strong advantages in both modeling multi-layer signals and solving label sparsity, respectively. However, there are still two key problems to be solved: Most CF models based on (1) GNN suffer from the over-smoothing problem and are unable to aggregate deep collaborative signals and (2) GCL adopts a single aggregation paradigm, resulting in a lack of diversity in the feature representation of collaborative signals. To solve the above problems, a multi-view deep graph contrastive learning for collaborative filtering (MD-GCCF) has been proposed from two perspectives. First, a deep graph collaborative signal aggregation module is proposed to learn potential intention similarity representations for deep collaborative signal propagation within a few layers. Second, a novel multi-view contrastive learning module has been proposed, utilizing both local and global contrastive learning views from the collaborative signal aggregation module to enhance deep structures and semantic features in collaborative signals. MD-GCCF improves by 9.52%, 3.34%, and 2.49% compared to the rival models, respectively, in the Amazon book, Yelp2018, and Gowalla datasets. The open source code is available: https://github.com/315TYJ/MD-GCCF.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
amo完成签到,获得积分0
刚刚
刚刚
贰叁完成签到,获得积分20
1秒前
ruochenzu完成签到,获得积分10
1秒前
shaoerll应助小巧若冰采纳,获得50
2秒前
3秒前
3秒前
3秒前
3秒前
4秒前
NANFENGSUSU发布了新的文献求助10
4秒前
梦Weimar发布了新的文献求助10
4秒前
5秒前
6秒前
一米八完成签到,获得积分10
6秒前
陈增阳发布了新的文献求助10
7秒前
7秒前
ruochenzu发布了新的文献求助10
8秒前
Paradox发布了新的文献求助10
9秒前
9秒前
leaolf应助愤怒的山兰采纳,获得30
9秒前
研友_VZG7GZ应助NANFENGSUSU采纳,获得10
12秒前
蛙蛙发布了新的文献求助10
12秒前
12秒前
12秒前
pillow发布了新的文献求助50
13秒前
星星发布了新的文献求助10
13秒前
15秒前
学术悍匪完成签到 ,获得积分10
15秒前
1111完成签到,获得积分20
15秒前
longtengfei完成签到,获得积分10
16秒前
16秒前
小巧若冰给小巧若冰的求助进行了留言
17秒前
正正发布了新的文献求助10
17秒前
17秒前
Sakura完成签到,获得积分10
19秒前
凌凌凌完成签到,获得积分10
19秒前
19秒前
20秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2000
줄기세포 생물학 1000
Biodegradable Embolic Microspheres Market Insights 888
Quantum reference frames : from quantum information to spacetime 888
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4467665
求助须知:如何正确求助?哪些是违规求助? 3928807
关于积分的说明 12191279
捐赠科研通 3582233
什么是DOI,文献DOI怎么找? 1968625
邀请新用户注册赠送积分活动 1006949
科研通“疑难数据库(出版商)”最低求助积分说明 901029