清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Deep representation learning for clustering longitudinal survival data from electronic health records

健康档案 聚类分析 纵向数据 代表(政治) 人工智能 深度学习 计算机科学 数据科学 电子健康档案 数据挖掘 政治学 医疗保健 政治 法学
作者
Jiajun Qiu,Yao Hu,Frank Li,A. Mesut Erzurumluoglu,Ingrid Brænne,Charles E. Whitehurst,Jochen Schmitz,Johann de Jong
出处
期刊:Research Square - Research Square
标识
DOI:10.21203/rs.3.rs-4283823/v1
摘要

Abstract Precision medicine can be defined as providing the right treatment to the right patient at the right time, and it requires the ability to identify clinically relevant patient subgroups with high accuracy. The increasing availability of large-scale longitudinal electronic health records (EHR) datasets has provided major opportunities for artificial intelligence and machine learning in mining such complex datasets for identifying novel disease subtypes. However, disease subtypes often exist in the context of certain disease-relevant risk events, and current efforts have been limited by stratifying patients either only by disease trajectory or only by event risk, largely ignoring the interactions between the two, which can result in subgroups that still display great heterogeneity in event risk and/or underlying molecular mechanisms. To capture such interactions, novel methods are needed that allow for clustering patients simultaneously by disease trajectory and event risk, To address this current gap in the literature, we developed TransVarSur (Transformer Variational Survival modeling). TransVarSur integrates a Transformer-based Gaussian mixture variational autoencoder with time-to-event modeling to capture complex relationships between cluster-specific EHR trajectories and survival times. We validated TransVarSur by showing superior performance relative to a range of baseline methods that either ignore longitudinality or the interactions between disease trajectories and event risk, on both synthetic and real-world benchmark datasets with known ground-truth clustering. We then applied TransVarSur to 1908 Crohn's disease patients from the UK Biobank and successfully identified four clusters displaying both divergent EHR trajectories and divergent progression towards the risk event intestinal obstruction. A further analysis of the clusters revealed known clinical and genetic factors relevant in Crohn's disease and progression to intestinal obstruction. In conclusion, we demonstrated TransVarSur’s ability to disentangle interactions between disease trajectories and risk events to more accurately stratify a patient population into clinically and genetically relevant subgroups. Hence, it can be a powerful tool in the development of precision medicine approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无一完成签到 ,获得积分10
13秒前
王jyk完成签到,获得积分10
17秒前
朝夕之晖完成签到,获得积分10
17秒前
Temperature完成签到,获得积分10
17秒前
cityhunter7777完成签到,获得积分10
17秒前
yzz完成签到,获得积分10
18秒前
BMG完成签到,获得积分10
18秒前
正直的如娆完成签到,获得积分10
19秒前
zwzw完成签到,获得积分10
19秒前
真的OK完成签到,获得积分10
19秒前
CGBIO完成签到,获得积分10
19秒前
zzhui完成签到,获得积分10
19秒前
文献蚂蚁完成签到,获得积分10
19秒前
qq完成签到,获得积分10
20秒前
喜喜完成签到,获得积分10
20秒前
洋芋饭饭完成签到,获得积分10
20秒前
啪嗒大白球完成签到,获得积分10
20秒前
美满惜寒完成签到,获得积分10
21秒前
runtang完成签到,获得积分10
21秒前
Syan完成签到,获得积分10
21秒前
清水完成签到,获得积分10
22秒前
29秒前
冷傲半邪发布了新的文献求助30
34秒前
量子星尘发布了新的文献求助10
36秒前
clock完成签到 ,获得积分10
47秒前
河豚不擦鞋完成签到 ,获得积分10
49秒前
wujiwuhui完成签到 ,获得积分10
49秒前
布干维尔岛耐摔王完成签到,获得积分10
51秒前
科研狗完成签到 ,获得积分0
58秒前
思源应助科研小木虫采纳,获得10
1分钟前
沧海一粟米完成签到 ,获得积分10
1分钟前
脑洞疼应助冷傲半邪采纳,获得30
1分钟前
雪宝宝完成签到 ,获得积分10
1分钟前
雪宝宝关注了科研通微信公众号
1分钟前
茶柠完成签到 ,获得积分10
1分钟前
bellapp完成签到 ,获得积分10
1分钟前
余呀余完成签到 ,获得积分10
1分钟前
minnie完成签到 ,获得积分10
2分钟前
科研通AI5应助科研通管家采纳,获得10
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introductory Chemistry 400
Life: The Science of Biology Digital Update 400
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Parenchymal volume and functional recovery after clamped partial nephrectomy: potential discrepancies 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4682948
求助须知:如何正确求助?哪些是违规求助? 4058215
关于积分的说明 12545974
捐赠科研通 3753863
什么是DOI,文献DOI怎么找? 2073322
邀请新用户注册赠送积分活动 1102323
科研通“疑难数据库(出版商)”最低求助积分说明 981614