Acceleration mechanisms of energetic ion debris in laser-driven tin plasma EUV sources

极紫外光刻 等离子体 极端紫外线 物理 离子 轴向对称偏滤器实验 原子物理学 激光器 材料科学 光学 核物理学 量子力学 冶金 托卡马克
作者
Samuel Totorica,K. V. Lezhnin,D. J. Hemminga,J. González,John Sheil,A. Diallo,A. Hyder,W. Fox
出处
期刊:Applied Physics Letters [American Institute of Physics]
卷期号:124 (17) 被引量:1
标识
DOI:10.1063/5.0200896
摘要

Laser-driven tin plasmas are driving new-generation nanolithography as sources of extreme ultraviolet (EUV) radiation centered at 13.5 nm. A major challenge facing industrial EUV source development is predicting energetic ion debris produced during the plasma expansion that may damage the sensitive EUV channeling multilayer optics. Gaining a detailed understanding of the plasma dynamics and ion acceleration mechanisms in these sources could provide critical insights for designing debris mitigation strategies in future high-power EUV sources. We develop a fully kinetic model of tin-EUV sources using one-dimensional particle-in-cell simulations to study ion debris acceleration, which will be valuable for cross-validation of radiation-hydrodynamic simulations. An inverse-bremsstrahlung heating operator is used to model the interaction of a tin target with an Nd:YAG laser, and thermal conduction is included through a Monte Carlo Coulomb collision operator. While the large-scale evolution is in reasonable agreement with analogous hydrodynamic simulations, the significant timescale for collisional equilibration between electrons and ions allows for the development of prominent two-temperature features. A collimated flow of energetic ions is produced with a spectrum that is significantly enhanced at high energies compared to fluid simulations. The dominant acceleration mechanism is found to be a large-scale electric field supported mainly by the electron pressure gradient, which is enhanced in the kinetic simulations due to the increased electron temperature. We discuss the implications of these results for future modeling of tin-EUV sources and the development of debris mitigation schemes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
3秒前
3秒前
3秒前
科研通AI5应助MechaniKer采纳,获得10
4秒前
小叙完成签到 ,获得积分10
6秒前
Jasper应助自由青柏采纳,获得10
7秒前
颗粒完成签到,获得积分10
7秒前
1351567822发布了新的文献求助20
7秒前
whutzxy完成签到,获得积分10
9秒前
打打应助科研通管家采纳,获得10
10秒前
科研助手6应助科研通管家采纳,获得10
10秒前
在水一方应助科研通管家采纳,获得10
10秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
充电宝应助科研通管家采纳,获得10
10秒前
Ava应助科研通管家采纳,获得10
10秒前
一一应助科研通管家采纳,获得10
10秒前
10秒前
10秒前
10秒前
11秒前
李健应助HLT采纳,获得10
11秒前
空白完成签到,获得积分10
12秒前
李程发布了新的文献求助10
13秒前
14秒前
顺利毕业完成签到,获得积分10
14秒前
14秒前
lalala发布了新的文献求助10
16秒前
科研通AI2S应助星星2012采纳,获得10
16秒前
辣辣完成签到,获得积分10
17秒前
元谷雪发布了新的文献求助10
17秒前
自由青柏发布了新的文献求助10
18秒前
汤灿发布了新的文献求助30
19秒前
shun完成签到,获得积分10
19秒前
椋鸟应助培a采纳,获得10
20秒前
21秒前
21秒前
EvilS完成签到,获得积分10
21秒前
梁婧茵关注了科研通微信公众号
22秒前
我吃吃吃吃吃吃完成签到 ,获得积分10
23秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Pharmacological profile of sulodexide 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3805070
求助须知:如何正确求助?哪些是违规求助? 3350197
关于积分的说明 10347558
捐赠科研通 3066017
什么是DOI,文献DOI怎么找? 1683448
邀请新用户注册赠送积分活动 809021
科研通“疑难数据库(出版商)”最低求助积分说明 765153