An AI-based approach driven by genotypes and phenotypes to uplift the diagnostic yield of genetic diseases

生物 人类遗传学 表型 基因型 产量(工程) 遗传学 代谢性疾病 进化生物学 计算生物学 生物信息学 基因 内分泌学 材料科学 冶金
作者
Susanna Zucca,Giovanna Nicora,F. De Paoli,Mauro Giovanni Carta,Riccardo Bellazzi,Paolo Magni,Ettore Rizzo,Ivan Limongelli
出处
期刊:Human Genetics [Springer Science+Business Media]
标识
DOI:10.1007/s00439-023-02638-x
摘要

Abstract Identifying disease-causing variants in Rare Disease patients’ genome is a challenging problem. To accomplish this task, we describe a machine learning framework, that we called “Suggested Diagnosis”, whose aim is to prioritize genetic variants in an exome/genome based on the probability of being disease-causing. To do so, our method leverages standard guidelines for germline variant interpretation as defined by the American College of Human Genomics (ACMG) and the Association for Molecular Pathology (AMP), inheritance information, phenotypic similarity, and variant quality. Starting from (1) the VCF file containing proband’s variants, (2) the list of proband’s phenotypes encoded in Human Phenotype Ontology terms, and optionally (3) the information about family members (if available), the “Suggested Diagnosis” ranks all the variants according to their machine learning prediction. This method significantly reduces the number of variants that need to be evaluated by geneticists by pinpointing causative variants in the very first positions of the prioritized list. Most importantly, our approach proved to be among the top performers within the CAGI6 Rare Genome Project Challenge, where it was able to rank the true causative variant among the first positions and, uniquely among all the challenge participants, increased the diagnostic yield of 12.5% by solving 2 undiagnosed cases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
哇哈哈哈完成签到,获得积分10
刚刚
王算法完成签到,获得积分10
1秒前
1秒前
SciGPT应助小王采纳,获得10
1秒前
科研通AI5应助Dream采纳,获得10
2秒前
3秒前
1111sss发布了新的文献求助30
4秒前
bkagyin应助晨阳采纳,获得10
4秒前
满意的友桃完成签到,获得积分10
6秒前
10秒前
领导范儿应助小李采纳,获得10
12秒前
小王发布了新的文献求助10
16秒前
科研通AI5应助科研通管家采纳,获得10
16秒前
liu发布了新的文献求助10
16秒前
香蕉觅云应助科研通管家采纳,获得10
16秒前
16秒前
16秒前
科研通AI5应助科研通管家采纳,获得30
16秒前
科研通AI2S应助偷乐采纳,获得10
16秒前
17秒前
19秒前
隐形曼青应助典雅的俊驰采纳,获得10
20秒前
深情的嫣然完成签到,获得积分10
22秒前
欢城发布了新的文献求助10
23秒前
25秒前
27秒前
29秒前
积极以云发布了新的文献求助10
29秒前
孤独梦曼完成签到,获得积分10
30秒前
Dream发布了新的文献求助10
33秒前
33秒前
33秒前
35秒前
yyy发布了新的文献求助10
36秒前
一勺四季完成签到 ,获得积分10
36秒前
ivy应助1111sss采纳,获得10
37秒前
38秒前
欢城完成签到,获得积分10
39秒前
freedom发布了新的文献求助30
39秒前
40秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Computational Atomic Physics for Kilonova Ejecta and Astrophysical Plasmas 500
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781798
求助须知:如何正确求助?哪些是违规求助? 3327359
关于积分的说明 10230805
捐赠科研通 3042262
什么是DOI,文献DOI怎么找? 1669926
邀请新用户注册赠送积分活动 799434
科研通“疑难数据库(出版商)”最低求助积分说明 758804