Nonlocal Tensor Decomposition With Joint Low Rankness and Smoothness for Spectral CT Image Reconstruction

迭代重建 平滑度 计算机视觉 计算机科学 张量(固有定义) 图像处理 人工智能 分解 数学 图像(数学) 算法 数学分析 几何学 生态学 生物
作者
Chunyan Liu,Sui Li,Dianlin Hu,Jianjun Wang,Wenjin Qin,Chen Liu,Peng Zhang
出处
期刊:IEEE transactions on computational imaging 卷期号:10: 613-627
标识
DOI:10.1109/tci.2024.3384812
摘要

Spectral computed tomography (CT) is a medical imaging technology that utilizes the measurement of X-ray energy absorption in human tissue to obtain image information. It can provide more accurate and detailed image information, thereby improving the accuracy of diagnosis. However, the process of spectral CT imaging is usually accompanied by a large amount of radiation and noise, which makes it difficult to obtain high-quality spectral CT image. Therefore, this paper constructs a basic third-order tensor unit based on the self-similarity of patches in the spatial domain and spectral domain while proposing nonlocal spectral CT image reconstruction methods to obtain high-quality spectral CT image. Specifically, the algorithm decomposes the recombination tensor into a low-rank tensor and a sparse tensor, which are applied by weighted tensor nuclear norm (WTNN) and weighted tensor total variation (WTTV) norm to improve the reconstruction quality, respectively. In order to further improve algorithm performance, this paper also uses weighted tensor correlated total variation regularization(WTCTV) to simultaneously characterize the low rankness and smoothness of low-rank tensor, while the sparse tensor uses weighted tensor total variation regularization (WTTV) to represent the piecewise smooth structure of the spatial domain and the similarity between pixels and adjacent frames in the spectral domain. Hence, the proposed models can effectively provide faithful underlying information of spectral CT image while maintaining spatial structure. In addition, this paper uses the Alternating Direction Method of Multipliers(ADMM) to optimize the proposed spectral CT image reconstruction models. To verify the performance of the proposed algorithms, we conducted a large number of experiments on numerical phantom and clinic patient data. The experimental results indicate that incorporating weighted regularization outperforms the results without weighted regularization, and nonlocal similarity can achieve better results than that without nonlocal similarity. Compared with existing popular algorithms, the proposed models significantly reduce running time and improve the quality of spectral CT image, thereby assisting doctors in more accurate diagnosis and treatment of diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
yyds发布了新的文献求助10
2秒前
积极鸵鸟发布了新的文献求助10
3秒前
牛的滑发布了新的文献求助10
3秒前
3秒前
daisy应助旷野采纳,获得10
3秒前
liuqiuyue完成签到,获得积分20
3秒前
BulingQAQ完成签到,获得积分20
4秒前
嘻嘻哈哈完成签到 ,获得积分10
5秒前
白杨完成签到 ,获得积分10
5秒前
英姑应助Dicy采纳,获得10
6秒前
斐嘿嘿发布了新的文献求助10
7秒前
7秒前
西喜发布了新的文献求助10
9秒前
QJN发布了新的文献求助10
9秒前
喃喃完成签到,获得积分10
10秒前
10秒前
10秒前
zho应助dddmk采纳,获得10
13秒前
六一发布了新的文献求助10
16秒前
xmj发布了新的文献求助30
16秒前
WissF-完成签到,获得积分10
16秒前
牛的滑完成签到,获得积分10
17秒前
Umiblue完成签到,获得积分10
17秒前
失眠呆呆鱼完成签到 ,获得积分10
17秒前
Umiblue发布了新的文献求助10
19秒前
jingyi完成签到,获得积分10
19秒前
20秒前
louise完成签到,获得积分10
21秒前
科研通AI5应助孤独的问凝采纳,获得10
21秒前
念之驳回了Alex应助
22秒前
852应助许雯卓采纳,获得10
22秒前
乐乐应助侦察兵采纳,获得10
23秒前
糟糕的铁锤应助jianghs采纳,获得50
25秒前
ding应助cure采纳,获得10
27秒前
will完成签到,获得积分20
27秒前
Luuuuu完成签到,获得积分10
28秒前
28秒前
小蘑菇应助xiaolong0325ly采纳,获得10
28秒前
FashionBoy应助朴素的元枫采纳,获得10
29秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792160
求助须知:如何正确求助?哪些是违规求助? 3336398
关于积分的说明 10280823
捐赠科研通 3053076
什么是DOI,文献DOI怎么找? 1675455
邀请新用户注册赠送积分活动 803469
科研通“疑难数据库(出版商)”最低求助积分说明 761401