Research on the electromyography-based pattern recognition for inter-limb coordination in human crawling motion

爬行 人工智能 计算机科学 肌电图 支持向量机 模式识别(心理学) 分割 机器人 运动(物理) 物理医学与康复 医学 解剖
作者
Chengxiang Li,Xiang Chen,Xu Zhang,De Wu
出处
期刊:Frontiers in Neuroscience [Frontiers Media]
卷期号:18
标识
DOI:10.3389/fnins.2024.1349347
摘要

Aiming to provide a feasible crawling motion analysis method for clinical application, this study introduced electromyography (EMG)-based motion intention recognition technology into the pattern recognition of inter-limb coordination during human crawling for the first time. Eight inter-limb coordination modes (ILCMs) were defined. Ten adult participants were recruited, and each participant performed hands-knees crawling at low, medium, and fast speeds in self-selected ILCMs and the eight predefined ILCMs, respectively. EMG signals for pattern recognition were collected from 30 limbs and trunk muscles, and pressure signals for crawling cycle segmentation were collected from the left palm. The pattern recognition experiments were conducted in participant-specific, multi-participant, and participant-independent ways, respectively, adopting three different classifiers, including bidirectional long short-term memory (BiLSTM) network, support vector machine (SVM), and k-nearest neighbor (KNN). The experimental results show that EMG-based pattern recognition schemes could classify the eight ILCMs with high recognition rates, thereby confirming the feasibility of providing an EMG-based crawling motion analysis method for clinical doctors. Furthermore, based on the classification results of self-selected ILCMs at different speeds and the statistical results of stance duration, swing duration, and the duty factors of stance phase, the possible reasons why humans chose various ILCMs at different crawling speeds were discussed. The research results have potential application value for evaluating crawling function, understanding abnormal crawling control mechanisms, and designing rehabilitation robots.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大智若愚骨头完成签到,获得积分10
18秒前
20秒前
伯约发布了新的文献求助10
26秒前
35秒前
一区种子选手完成签到,获得积分10
36秒前
伯约完成签到,获得积分20
39秒前
CWC完成签到,获得积分10
43秒前
皎月诗心完成签到 ,获得积分10
43秒前
烟花应助伯约采纳,获得10
45秒前
whitepiece完成签到,获得积分10
47秒前
妮可罗宾完成签到 ,获得积分10
53秒前
cdercder应助科研通管家采纳,获得10
57秒前
cdercder应助科研通管家采纳,获得10
57秒前
脑洞疼应助科研通管家采纳,获得10
57秒前
cdercder应助科研通管家采纳,获得10
57秒前
小杨完成签到 ,获得积分10
1分钟前
默默地读文献应助zzxx采纳,获得10
1分钟前
离子电池完成签到,获得积分10
1分钟前
沉静从凝完成签到 ,获得积分10
1分钟前
执意完成签到 ,获得积分10
1分钟前
史克珍香完成签到 ,获得积分10
1分钟前
陈默完成签到 ,获得积分10
1分钟前
研友_nVWP2Z完成签到 ,获得积分10
1分钟前
不安的白昼完成签到,获得积分10
1分钟前
1分钟前
CLTTTt完成签到,获得积分10
1分钟前
海孩子完成签到,获得积分10
1分钟前
white完成签到,获得积分10
1分钟前
qaplay完成签到 ,获得积分0
1分钟前
e746700020完成签到,获得积分10
1分钟前
亭2007完成签到 ,获得积分10
1分钟前
吃猫的鱼发布了新的文献求助10
1分钟前
DMA50完成签到 ,获得积分10
1分钟前
追梦完成签到,获得积分10
1分钟前
健忘的晓小完成签到 ,获得积分10
1分钟前
lwtsy完成签到,获得积分10
2分钟前
2分钟前
吃猫的鱼完成签到,获得积分20
2分钟前
俏皮诺言完成签到,获得积分10
2分钟前
lamp完成签到 ,获得积分10
2分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777682
求助须知:如何正确求助?哪些是违规求助? 3323111
关于积分的说明 10213007
捐赠科研通 3038447
什么是DOI,文献DOI怎么找? 1667382
邀请新用户注册赠送积分活动 798115
科研通“疑难数据库(出版商)”最低求助积分说明 758273