清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Scope-Free Global Multi-Condition-Aware Industrial Missing Data Imputation Framework via Diffusion Transformer

计算机科学 插补(统计学) 数据挖掘 数据建模 缺少数据 范围(计算机科学) 数据库 机器学习 程序设计语言
作者
Diju Liu,Yalin Wang,Chenliang Liu,Xiaofeng Yuan,Kai Wang,Chunhua Yang
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [IEEE Computer Society]
卷期号:36 (11): 6977-6988 被引量:1
标识
DOI:10.1109/tkde.2024.3392897
摘要

Missing data is a common phenomenon in the industrial field. The recovery of missing data is crucial to enhance the reliability of subsequent data-driven monitoring and control of industrial processes. Most existing methods are limited by the confined scope of feature extraction, which makes it impossible to rely on global information to impute missing data. In addition, they usually assume that industrial data is a uniform distribution across all working conditions, ignoring the differences in data evolution patterns across different conditions. To address these issues, this paper proposes an innovative scope-free global multi-condition-aware imputation framework based on diffusion transformer (SGMCAI-DiT). First, it extends the diffusion model by introducing conditional probability to capture the condition distribution of the entire data. Then, a noise prediction model is designed based on a novel double-weighted attention mechanism (DW-SA) to broaden the horizons of feature extraction. By discerning the inter-conditional interactions and the intra-conditional local information, the missing data imputation performance can be improved. Finally, the effectiveness and suitability of the proposed SGMCAI-DiT are verified on four real datasets sourced from industrial processes and two public non-industrial datasets. Extensive experimental results demonstrate that the proposed method outperforms several state-of-the-art methods in different missing data scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
红茸茸羊完成签到 ,获得积分10
6秒前
31秒前
XD824完成签到,获得积分10
34秒前
XD824发布了新的文献求助10
36秒前
沉沉完成签到 ,获得积分0
1分钟前
周冯雪完成签到 ,获得积分10
1分钟前
小烦同学完成签到,获得积分10
1分钟前
Nola完成签到 ,获得积分10
1分钟前
打打应助Rebekah采纳,获得10
2分钟前
2分钟前
ffff完成签到 ,获得积分10
2分钟前
Leon Lai完成签到,获得积分10
4分钟前
白嫖论文完成签到 ,获得积分10
6分钟前
科研通AI2S应助Owllight采纳,获得10
6分钟前
6分钟前
xun发布了新的文献求助10
6分钟前
xxx发布了新的文献求助10
6分钟前
CipherSage应助xun采纳,获得10
6分钟前
科研通AI2S应助科研通管家采纳,获得10
7分钟前
wujiwuhui完成签到 ,获得积分10
8分钟前
8分钟前
生如夏花完成签到 ,获得积分10
8分钟前
8分钟前
lysun完成签到,获得积分10
8分钟前
lysun发布了新的文献求助10
8分钟前
王木木发布了新的文献求助10
8分钟前
9分钟前
xun发布了新的文献求助10
10分钟前
记仇小猫完成签到,获得积分10
10分钟前
Axs完成签到,获得积分10
10分钟前
英姑应助科研通管家采纳,获得10
11分钟前
无辜的猎豹完成签到 ,获得积分10
11分钟前
11分钟前
Jaho完成签到,获得积分10
11分钟前
DrFoo发布了新的文献求助10
11分钟前
KINGAZX完成签到 ,获得积分10
12分钟前
ling361完成签到,获得积分10
12分钟前
DrFoo完成签到,获得积分10
12分钟前
13分钟前
13分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
A China diary: Peking 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784800
求助须知:如何正确求助?哪些是违规求助? 3330056
关于积分的说明 10244216
捐赠科研通 3045404
什么是DOI,文献DOI怎么找? 1671660
邀请新用户注册赠送积分活动 800592
科研通“疑难数据库(出版商)”最低求助积分说明 759508