亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Development and validation of machine learning models to predict postoperative infarction in moyamoya disease

医学 接收机工作特性 烟雾病 队列 血运重建 机器学习 人工智能 随机森林 梯度升压 支持向量机 围手术期 梗塞 外科 内科学 计算机科学 心肌梗塞
作者
Yutaro Fuse,Kazuki Ishii,Fumiaki Kanamori,Shintaro Oyama,Takahiro Imaizumi,Yoshio Araki,Kinya Yokoyama,Syuntaro Takasu,Yukio Seki,Ryuta Saito
出处
期刊:Journal of Neurosurgery [Journal of Neurosurgery Publishing Group]
卷期号:141 (4): 927-935 被引量:4
标识
DOI:10.3171/2024.1.jns232173
摘要

OBJECTIVE Cerebral infarction is a common complication in patients undergoing revascularization surgery for moyamoya disease (MMD). Although previous statistical evaluations have identified several risk factors for postoperative brain ischemia, the ability to predict its occurrence based on these limited predictors remains inadequately explored. This study aimed to assess the feasibility of machine learning algorithms for predicting cerebral infarction after revascularization surgery in patients with MMD. METHODS This retrospective study was conducted across two centers and harnessed data from 512 patients with MMD who had undergone revascularization surgery. The patient cohort was partitioned into internal and external datasets. Using perioperative clinical data from the internal cohort, three distinct machine learning algorithms—namely the support vector machine, random forest, and light gradient-boosting machine models—were trained and cross-validated to predict the occurrence of postoperative cerebral infarction. Predictive performance validity was subsequently assessed using an external dataset. Shapley additive explanations (SHAP) analysis was conducted to augment the prediction model’s transparency and to quantify the impact of each input variable on shaping both the aggregate and individual patient predictions. RESULTS In the cohort of 512 patients, 33 (6.4%) experienced postrevascularization cerebral infarction. The cross-validation outcomes revealed that, among the three models, the support vector machine model achieved the largest area under the receiver operating characteristic curve (ROC-AUC) at mean ± SD 0.785 ± 0.052. Notably, during external validation, the light gradient-boosting machine model exhibited the highest accuracy at 0.903 and the largest ROC-AUC at 0.710. The top-performing prediction model utilized five input variables: postoperative serum gamma-glutamyl transpeptidase value, positive posterior cerebral artery (PCA) involvement on preoperative MRA, infarction as the rationale for surgery, presence of an infarction scar on preoperative MRI, and preoperative modified Rankin Scale score. Furthermore, the SHAP analysis identified presence of PCA involvement, infarction as the rationale for surgery, and presence of an infarction scar on preoperative MRI as positive influences on postoperative cerebral infarction. CONCLUSIONS This study indicates the usefulness of employing machine learning techniques with routine perioperative data to predict the occurrence of cerebral infarction after revascularization procedures in patients with MMD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
Chat发布了新的文献求助10
8秒前
style完成签到,获得积分10
12秒前
黑木完成签到 ,获得积分10
14秒前
15秒前
15秒前
16秒前
18秒前
莫问今生完成签到,获得积分10
18秒前
烊驼发布了新的文献求助30
25秒前
25秒前
volunteer完成签到 ,获得积分10
25秒前
烊驼完成签到,获得积分10
35秒前
38秒前
CCS完成签到 ,获得积分10
38秒前
湘湘完成签到 ,获得积分10
40秒前
峰无坦途完成签到,获得积分10
40秒前
42秒前
yuqian发布了新的文献求助10
44秒前
47秒前
54秒前
58秒前
Lucas应助yuqian采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
殷勤的觅松完成签到,获得积分10
1分钟前
二狗完成签到 ,获得积分10
1分钟前
alanbike完成签到,获得积分10
1分钟前
1分钟前
1分钟前
碧蓝雨安完成签到,获得积分10
1分钟前
1分钟前
不会学习的小郭完成签到 ,获得积分10
1分钟前
morena发布了新的文献求助10
1分钟前
噜噜噜完成签到 ,获得积分10
1分钟前
1分钟前
欢喜的小海豚应助赵景豪采纳,获得30
1分钟前
清爽冬莲完成签到 ,获得积分0
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5482254
求助须知:如何正确求助?哪些是违规求助? 4583174
关于积分的说明 14388761
捐赠科研通 4512190
什么是DOI,文献DOI怎么找? 2472717
邀请新用户注册赠送积分活动 1458988
关于科研通互助平台的介绍 1432363