清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Abstract 7424: iStarTLS: Advanced detection and phenotyping of tertiary lymphoid structures

医学 肿瘤科 内科学 病理
作者
Kyung Serk Cho,Jiahui Jiang,Daiwei Zhang,Yunhe Liu,Jianfeng Chen,Rossana Lazcano Segura,Xinmiao Yan,Guangsheng Pei,Luisa M. Solis Soto,Yanshuo Chu,Ansam Sinjab,Cassian Yee,Scott Kopetz,Anirban Maitra,P. Andrew Futreal,Alexander J. Lazar,Amir A. Jazaeri,Humam Kadara,Jianjun Gao,Mingyao Li
出处
期刊:Cancer Research [American Association for Cancer Research]
卷期号:84 (6_Supplement): 7424-7424 被引量:1
标识
DOI:10.1158/1538-7445.am2024-7424
摘要

Abstract Tertiary lymphoid structures (TLSs) are clusters of immune cells formed in non-lymphoid tissues. They are often found at sites of chronic inflammation, notably within the invasive margins and the core of various solid tumors. TLSs are pivotal in mediating anti-tumor immunity. However, our understanding of TLSs in large/complex tissue contexts remains incomplete due to the lack of computational tools to effectively detect and phenotype TLSs. Recent advances in spatially resolved transcriptomics (SRT) present a broader spectrum of analytical possibilities for investigating the spatial phenotypic heterogeneity of TLSs and their interaction with stromal and cancer cells. Here, we present iStarTLS (Inferring Super-resolution Tissue ARchitecture for TLSs), a computational toolkit designed to process SRT data for TLS detection and phenotyping and showcase its performance on breast, bladder, and lung cancer samples. By effectively integrating spatial gene expression data with state-of-the-art machine learning techniques, we can substantially enhance our capabilities in TLS detection and comprehensive phenotyping. iStarTLS starts by enhancing the spatial resolution of spot-level gene expression data to near-single-cell resolution by leveraging high-resolution information provided by paired histology images. To detect TLSs and infer their cellular composition, we developed a TLS signature. Based on the high-resolution gene expression measurements and a curated reference panel of cell type-specific markers, we score cell type-specific gene signatures to obtain a cell type probability map across the whole tissue section. This map gives rise to a segmentation of key cell type components of TLSs, enabling the spatial mapping and colocalization of different cell types. Moreover, such an approach would allow us to infer the phenotypic states of cells within the TLSs, assess their cellular compositions, and discern their cellular organization in large, spatially heterogeneous tissues at a near-single-cell resolution. Notably, in conjunction with nuclei segmentation of high-resolution histology images, iStarTLS precisely maps high endothelial venules (HEVs), a key structure within TLSs often overlooked by previous studies. iStarTLS paves the way for uncovering novel mechanisms of immune-tumor interactions and designing personalized therapies targeting specific cellular components or states within TLSs. Citation Format: Kyung Serk Cho, Jiahui Jiang, Daiwei Zhang, Yunhe Liu, Jianfeng Chen, Rossana L. Segura, Xinmiao Yan, Guangsheng Pei, Luisa M. Soto, Yanshuo Chu, Ansam F. Sinjab, Cassian Yee, Scott Kopetz, Anirban Maitra, Andrew Futreal, Alexander Lazar, Amir A. Jazaeri, Humam Kadara, Jianjun Gao, Mingyao Li, Linghua Wang. iStarTLS: Advanced detection and phenotyping of tertiary lymphoid structures [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2024; Part 1 (Regular Abstracts); 2024 Apr 5-10; San Diego, CA. Philadelphia (PA): AACR; Cancer Res 2024;84(6_Suppl):Abstract nr 7424.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
DreamRunner0410完成签到 ,获得积分10
4秒前
mario发布了新的文献求助10
9秒前
du完成签到 ,获得积分10
12秒前
mario完成签到,获得积分10
24秒前
个性松完成签到 ,获得积分10
25秒前
宇文雨文完成签到 ,获得积分10
28秒前
张流筝完成签到 ,获得积分10
29秒前
LXYzzm完成签到,获得积分20
32秒前
LXYzzm发布了新的文献求助10
37秒前
科研狗完成签到 ,获得积分0
37秒前
耕牛热完成签到,获得积分10
39秒前
嘉星糖完成签到,获得积分10
44秒前
氟锑酸完成签到 ,获得积分10
48秒前
Xzx1995完成签到 ,获得积分10
54秒前
千帆破浪完成签到 ,获得积分10
57秒前
852应助勇往直前采纳,获得10
59秒前
LXYzzm发布了新的文献求助10
1分钟前
tianshanfeihe完成签到 ,获得积分10
1分钟前
34101127完成签到 ,获得积分10
1分钟前
玩命的十三完成签到 ,获得积分10
1分钟前
huanghe完成签到,获得积分10
1分钟前
如意竺完成签到,获得积分10
1分钟前
爆米花应助LXYzzm采纳,获得10
1分钟前
文静的紫萱完成签到,获得积分10
1分钟前
1分钟前
勇往直前发布了新的文献求助10
1分钟前
yinyin完成签到 ,获得积分10
1分钟前
taoxz521完成签到 ,获得积分10
1分钟前
失眠的香蕉完成签到 ,获得积分0
1分钟前
松柏完成签到 ,获得积分10
1分钟前
mawenyu完成签到,获得积分10
1分钟前
奋斗的妙海完成签到 ,获得积分0
1分钟前
Evangeline993完成签到,获得积分10
1分钟前
语恒完成签到,获得积分10
1分钟前
扶我起来写论文完成签到 ,获得积分10
2分钟前
yuntong完成签到 ,获得积分0
2分钟前
燕儿完成签到 ,获得积分10
2分钟前
2分钟前
科研通AI2S应助三微之廿采纳,获得10
2分钟前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Robot-supported joining of reinforcement textiles with one-sided sewing heads 780
水稻光合CO2浓缩机制的创建及其作用研究 500
Logical form: From GB to Minimalism 500
2025-2030年中国消毒剂行业市场分析及发展前景预测报告 500
镇江南郊八公洞林区鸟类生态位研究 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4162527
求助须知:如何正确求助?哪些是违规求助? 3698081
关于积分的说明 11675108
捐赠科研通 3388455
什么是DOI,文献DOI怎么找? 1858167
邀请新用户注册赠送积分活动 918833
科研通“疑难数据库(出版商)”最低求助积分说明 831703