Generalizability and Diagnostic Performance of AI Models for Thyroid US

医学 概化理论 接收机工作特性 甲状腺结节 分割 Sørensen–骰子系数 科恩卡帕 人工智能 掷骰子 回顾性队列研究 机器学习 放射科 甲状腺 统计 外科 图像分割 计算机科学 内科学 数学
作者
Wenwen Xu,Xiaohong Jia,Zihan Mei,XiaoLin Gu,Yang Lu,Chi-Cheng Fu,Ruifang Zhang,Ying Gu,Xia Chen,Xiaomao Luo,Ning Li,Baoyan Bai,Qiaoying Li,Jiping Yan,Zhai Hong,Ling Guan,Bing Gong,Keyang Zhao,Qu Fang,Chuan He
出处
期刊:Radiology [Radiological Society of North America]
卷期号:307 (5) 被引量:10
标识
DOI:10.1148/radiol.221157
摘要

Background Artificial intelligence (AI) models have improved US assessment of thyroid nodules; however, the lack of generalizability limits the application of these models. Purpose To develop AI models for segmentation and classification of thyroid nodules in US using diverse data sets from nationwide hospitals and multiple vendors, and to measure the impact of the AI models on diagnostic performance. Materials and Methods This retrospective study included consecutive patients with pathologically confirmed thyroid nodules who underwent US using equipment from 12 vendors at 208 hospitals across China from November 2017 to January 2019. The detection, segmentation, and classification models were developed based on the subset or complete set of images. Model performance was evaluated by precision and recall, Dice coefficient, and area under the receiver operating characteristic curve (AUC) analyses. Three scenarios (diagnosis without AI assistance, with freestyle AI assistance, and with rule-based AI assistance) were compared with three senior and three junior radiologists to optimize incorporation of AI into clinical practice. Results A total of 10 023 patients (median age, 46 years [IQR 37–55 years]; 7669 female) were included. The detection, segmentation, and classification models had an average precision, Dice coefficient, and AUC of 0.98 (95% CI: 0.96, 0.99), 0.86 (95% CI: 0.86, 0.87), and 0.90 (95% CI: 0.88, 0.92), respectively. The segmentation model trained on the nationwide data and classification model trained on the mixed vendor data exhibited the best performance, with a Dice coefficient of 0.91 (95% CI: 0.90, 0.91) and AUC of 0.98 (95% CI: 0.97, 1.00), respectively. The AI model outperformed all senior and junior radiologists (P < .05 for all comparisons), and the diagnostic accuracies of all radiologists were improved (P < .05 for all comparisons) with rule-based AI assistance. Conclusion Thyroid US AI models developed from diverse data sets had high diagnostic performance among the Chinese population. Rule-based AI assistance improved the performance of radiologists in thyroid cancer diagnosis. © RSNA, 2023 Supplemental material is available for this article.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
luaxin发布了新的文献求助10
1秒前
bubu发布了新的文献求助10
2秒前
黯然完成签到 ,获得积分10
3秒前
洁净思枫完成签到,获得积分20
3秒前
4秒前
long完成签到 ,获得积分10
4秒前
研友_X89o6n完成签到,获得积分10
6秒前
lgh完成签到,获得积分10
6秒前
7秒前
FashionBoy应助纳纳椰采纳,获得10
8秒前
田様应助小扑棱蛾子采纳,获得10
8秒前
9秒前
babe完成签到 ,获得积分10
9秒前
HLT完成签到 ,获得积分10
11秒前
12秒前
研友_VZG7GZ应助安详的小翠采纳,获得10
12秒前
13秒前
14秒前
阿蒙完成签到,获得积分10
15秒前
16秒前
iNk应助过时的机器猫采纳,获得20
18秒前
仲大船发布了新的文献求助10
18秒前
魔力巴啦啦完成签到 ,获得积分10
18秒前
NexusExplorer应助真实的小伙采纳,获得10
18秒前
19秒前
纳纳椰发布了新的文献求助10
21秒前
23秒前
刘明生发布了新的文献求助10
24秒前
26秒前
李爱国应助科研通管家采纳,获得80
26秒前
何相逢应助科研通管家采纳,获得10
26秒前
zhuxiaoer发布了新的文献求助10
26秒前
Orange应助科研通管家采纳,获得10
26秒前
深情安青应助科研通管家采纳,获得10
26秒前
科研通AI2S应助科研通管家采纳,获得10
26秒前
NexusExplorer应助科研通管家采纳,获得10
26秒前
纳纳椰完成签到,获得积分10
26秒前
丘比特应助科研通管家采纳,获得10
26秒前
26秒前
27秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 700
Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms 500
SPSS for Windows Step by Step: A Simple Study Guide and Reference, 17.0 Update (10th Edition) 500
PBSM: Predictive Bi-Preference Stable Matching in Spatial Crowdsourcing 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4126291
求助须知:如何正确求助?哪些是违规求助? 3663886
关于积分的说明 11593318
捐赠科研通 3363474
什么是DOI,文献DOI怎么找? 1848222
邀请新用户注册赠送积分活动 912232
科研通“疑难数据库(出版商)”最低求助积分说明 827947