Generalizability and Diagnostic Performance of AI Models for Thyroid US

医学 概化理论 接收机工作特性 甲状腺结节 分割 Sørensen–骰子系数 科恩卡帕 人工智能 掷骰子 回顾性队列研究 机器学习 放射科 甲状腺 统计 外科 图像分割 计算机科学 内科学 数学
作者
Wenwen Xu,Xiaohong Jia,Zihan Mei,XiaoLin Gu,Yang Lu,Chi-Cheng Fu,Ruifang Zhang,Ying Gu,Xia Chen,Xiaomao Luo,Ning Li,Baoyan Bai,Qiaoying Li,Jiping Yan,Zhai Hong,Ling Guan,Bing Gong,Keyang Zhao,Qu Fang,Chuan He
出处
期刊:Radiology [Radiological Society of North America]
卷期号:307 (5) 被引量:10
标识
DOI:10.1148/radiol.221157
摘要

Background Artificial intelligence (AI) models have improved US assessment of thyroid nodules; however, the lack of generalizability limits the application of these models. Purpose To develop AI models for segmentation and classification of thyroid nodules in US using diverse data sets from nationwide hospitals and multiple vendors, and to measure the impact of the AI models on diagnostic performance. Materials and Methods This retrospective study included consecutive patients with pathologically confirmed thyroid nodules who underwent US using equipment from 12 vendors at 208 hospitals across China from November 2017 to January 2019. The detection, segmentation, and classification models were developed based on the subset or complete set of images. Model performance was evaluated by precision and recall, Dice coefficient, and area under the receiver operating characteristic curve (AUC) analyses. Three scenarios (diagnosis without AI assistance, with freestyle AI assistance, and with rule-based AI assistance) were compared with three senior and three junior radiologists to optimize incorporation of AI into clinical practice. Results A total of 10 023 patients (median age, 46 years [IQR 37–55 years]; 7669 female) were included. The detection, segmentation, and classification models had an average precision, Dice coefficient, and AUC of 0.98 (95% CI: 0.96, 0.99), 0.86 (95% CI: 0.86, 0.87), and 0.90 (95% CI: 0.88, 0.92), respectively. The segmentation model trained on the nationwide data and classification model trained on the mixed vendor data exhibited the best performance, with a Dice coefficient of 0.91 (95% CI: 0.90, 0.91) and AUC of 0.98 (95% CI: 0.97, 1.00), respectively. The AI model outperformed all senior and junior radiologists (P < .05 for all comparisons), and the diagnostic accuracies of all radiologists were improved (P < .05 for all comparisons) with rule-based AI assistance. Conclusion Thyroid US AI models developed from diverse data sets had high diagnostic performance among the Chinese population. Rule-based AI assistance improved the performance of radiologists in thyroid cancer diagnosis. © RSNA, 2023 Supplemental material is available for this article.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lo完成签到,获得积分10
刚刚
1秒前
1秒前
1秒前
小小发布了新的文献求助10
1秒前
Emma发布了新的文献求助10
2秒前
131949完成签到,获得积分20
2秒前
小小徐完成签到 ,获得积分10
3秒前
暖暖完成签到,获得积分20
4秒前
4秒前
坚守初心发布了新的文献求助10
5秒前
5秒前
阿娟发布了新的文献求助10
5秒前
5秒前
Awikl发布了新的文献求助10
5秒前
可爱的函函应助luxiaoyu采纳,获得10
6秒前
6秒前
小金鱼完成签到,获得积分10
7秒前
8秒前
玉玉完成签到,获得积分10
9秒前
10秒前
MMM完成签到 ,获得积分10
10秒前
英俊的铭应助xuz采纳,获得10
10秒前
张石垒完成签到,获得积分10
10秒前
TiY发布了新的文献求助10
11秒前
小星星发布了新的文献求助30
11秒前
wj完成签到 ,获得积分10
12秒前
科研通AI5应助愤怒的树叶采纳,获得10
12秒前
13秒前
小柯基学从零学起完成签到,获得积分10
13秒前
耐斯糖完成签到 ,获得积分10
14秒前
14秒前
15秒前
16秒前
17秒前
隐形曼青应助高兴的明轩采纳,获得10
17秒前
18秒前
平常水卉完成签到,获得积分10
18秒前
18秒前
19秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800140
求助须知:如何正确求助?哪些是违规求助? 3345459
关于积分的说明 10325049
捐赠科研通 3061931
什么是DOI,文献DOI怎么找? 1680614
邀请新用户注册赠送积分活动 807158
科研通“疑难数据库(出版商)”最低求助积分说明 763509