Novel Machine Learning Algorithms for Prediction of Treatment Decisions in Adult Patients With Class III Malocclusion

医学 错牙合 正颌外科 协变量 口腔正畸科 牙科 机器学习 统计显著性 算法 数学 计算机科学 内科学
作者
Samim Taraji,Salih Furkan Atici,Grace Viana,Budi Kusnoto,Veersathpurush Allareddy,Michael Miloro,Mohammed H. Elnagar
出处
期刊:Journal of Oral and Maxillofacial Surgery [Elsevier]
卷期号:81 (11): 1391-1402 被引量:15
标识
DOI:10.1016/j.joms.2023.07.137
摘要

Management of Class III (Cl III) dentoskeletal phenotype is often expert-driven.The aim is to identify critical morphological features in postcircumpubertal Cl III treatment and appraise the predictive ability of innovative machine learning (ML) algorithms for adult Cl III malocclusion treatment planning.The Orthodontics Department at the University of Illinois Chicago undertook a retrospective cross-sectional study analyzing Cl III malocclusion cases (2003-2020) through dental records and pretreatment lateral cephalograms.Forty features were identified through a literature review and gathered from pretreatment records, serving as ML model inputs. Eight ML models were trained to predict the best treatment for adult Cl III malocclusion.Predictive accuracy, sensitivity, and specificity of the models, along with the highest-contributing features, were evaluated for performance assessment.Demographic covariates, including age, gender, race, and ethnicity, were assessed. Inclusion criteria targeted patients with cervical vertebral maturation stage 4 or above. Operative covariates such as tooth extraction and types of orthognathic surgical maneuvers were also analyzed.Demographic characteristics of the camouflage and surgical study groups were described statistically. Shapiro-Wilk Normality test was employed to check data distribution. Differences in means between groups were evaluated using parametric and nonparametric independent sample tests, with statistical significance set at <0.05.The study involved 182 participants; 65 underwent camouflage mechanotherapy, and 117 received orthognathic surgery. No statistical differences were found in demographic characteristics between the two groups (P > .05). Extreme values of pretreatment parameters suggested a surgical approach. Artificial neural network algorithms predicted treatment approach with 91% accuracy, while the Extreme Gradient Boosting model achieved 93% accuracy after recursive feature elimination optimization. The Extreme Gradient Boosting model highlighted Wit's appraisal, anterior overjet, and Mx/Md ratio as key predictors.The research identified significant cephalometric differences between Cl III adults requiring orthodontic camouflage or surgery. A 93% accurate artificial intelligence model was formulated based on these insights, highlighting the potential role of artificial intelligence and ML as adjunct tools in orthodontic diagnosis and treatment planning. This may assist in minimizing clinician subjectivity in borderline cases.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
星辰大海应助zhdan采纳,获得10
2秒前
3秒前
4秒前
丘比特应助迷你的沛萍采纳,获得10
4秒前
勤奋采柳发布了新的文献求助10
5秒前
大力向南完成签到,获得积分10
5秒前
王丹丹发布了新的文献求助10
5秒前
myh发布了新的文献求助10
5秒前
orixero应助满意的颦采纳,获得10
6秒前
Sophie_W完成签到,获得积分10
6秒前
我是老大应助66采纳,获得10
7秒前
7秒前
7秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
脑洞疼应助暴躁的振家采纳,获得10
8秒前
echo发布了新的文献求助10
8秒前
耶耶耶完成签到,获得积分10
8秒前
nature预备军完成签到,获得积分10
9秒前
bkagyin应助葡萄小伊ovo采纳,获得10
10秒前
11秒前
奋斗的萤完成签到,获得积分10
12秒前
12秒前
领导范儿应助王丹丹采纳,获得10
12秒前
13秒前
myh完成签到,获得积分10
14秒前
15秒前
otto12306发布了新的文献求助10
16秒前
16秒前
16秒前
17秒前
17秒前
灵巧的斓发布了新的文献求助10
17秒前
思源应助东郭雁梅采纳,获得30
19秒前
19秒前
赵闯发布了新的文献求助10
19秒前
20秒前
可爱的函函应助认真凝安采纳,获得10
21秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5520726
求助须知:如何正确求助?哪些是违规求助? 4612385
关于积分的说明 14533406
捐赠科研通 4549963
什么是DOI,文献DOI怎么找? 2493270
邀请新用户注册赠送积分活动 1474552
关于科研通互助平台的介绍 1446091